対話式洪水流出計算マニュアル

(第 1 版)

平成16年2月

(財)北海道河川防災研究センター・研究所

Research Institute, Foundation of Hokkaido River Disaster Prevention Research Center

	目 次	
序		1
シスラ	テムインストールにおける注意事項	2
1.は	:じめに	3
2.流	出解析手法とデータについて	3
2.1	流出解析手法	3
2.2	使用データ	4
2.3	モデル定数最適化の目的関数と精度評価指標	8
3.有	効雨量を用いた貯留関数法(単流域解析)	9
3.1	手法の特徴	9
3.2	流出モデル	9
3.3	f_c の最適化法	- 10
3.4	流出成分の分離	- 11
3.5	有効雨量の算出	- 16
3.6	ファクター <i>f_c</i> の探索	- 16
3.7	ファクター f_c の感度	- 20
⊿ 埍	生頂を今む時空間数注(1段々ンク刑時空間数モデル・単流域解析)	- 21
4 . 頂	天境を含め 苗関数仏(「投ランク室! 苗関数 Cグル・半加域解析) 手注の特徴	- Z I 21
4.1	テムの符は	- Z I 21
4.2		- 21 - 21
4.0		- 23
4.5		- 25
7.0		20
5.地	下水流出を含む貯留関数法(2段タンク型貯留関数モデル:単流域解析)	- 28
5.1	手法の特徴	- 28
5.2	流出モデル	- 28
5.3	未知定数 c_1 , c_2 , c_3 の最適化法	- 29
5.4	地下水流出成分の分離時定数 T_c の設定	- 29
5.5	計算例	- 32

6.複	合流域の洪水流出計算法(1段タンク型貯留関数モデル)	- 36
6.1	手法の特徴	- 36
6.2	流出モデル	- 36
6.3	未知定数 c_1 , c_2 , c_3 の最適化法	- 37
6.4	流域・河道ネットワークの識別方法	- 39
6.5	計算例	- 42
7.流	出計算システムの使用法	- 45
7.1	単流域解析システム	- 46
7.2	流域分割解析システム	- 70
7.3	流出計算システムメッセージ一覧	- 83

地形が急峻で洪水流出現象の非線形性が強い我が国の洪水流出特性の把握及び治水計画 の策定要請を受けて、洪水流出・河道追跡の計算法として貯留関数法が長期間に亘って用 いられてきた。1960年代に開発された木村の貯留関数法は、工事実施基本計画策定におい ても、一級河川水系の76%で使用され、多くの実績を有していることから、実務者にとっ てもなじみやすいものとなっている。

本書で採用している貯留関数法は、kinematic wave 法の解と等価なモデルに集中化され ているので、モデル定数の物理的意味が明確である。また、貯留量と流量の二価性は非線 形貯留方程式で直接表現されているので、遅れ時間を必要としない利点を有している。

貯留関数法を主体とした洪水解析手法は、2001 年 5 月及び 2002 年 10 月に、北海道開発 局河川計画課監修のもと、(財)北海道河川防災研究センター・研究所から発行された「一 般化貯留関数法による流域流出解析・河道洪水追跡実用計算法」と「単一流域を対象とし た貯留関数法の精度比較」に詳細な解説とフォートランプログラム及び多くの適用例が示 されている。

しかしながら、これらの報告書の内容が数学的最適化手法など、多くの数式展開を含んで 複雑であるためか、現場の技術者に十分理解されていないという課題が残され、その結果 として、上記報告書が有効に活用されていないのが実状である。したがって、本報告書の 目的は、日頃から洪水流出解析ができるように実地トレーニングを兼ねて、2002 年度から 実施されている「洪水流出計算講習会」を通して、できるだけ多くの若手河川技術者に貯 留関数法による流出解析手法に慣れ親しんでもらうための会話形式計算システムを提供す るものである。

最初に有効雨量から直接流出量を算出する「有効雨量を用いた貯留関数法」を解説した。 次に、貯留関数法に損失機構を取り入れ、観測雨量と観測流量を直接流出計算に取り込む ことが出来る「損失項を含む貯留関数法(1段タンク型貯留関数モデル)」の使い方を示し た。さらに、表面・中間流出成分と地下水流出成分に対応できる直列2段タンク型貯留関 数モデルに拡張した「地下水流出成分を含む貯留関数法(2段タンク型貯留関数モデル)」 を示した。本書には、上記3手法が単一流域を対象とした洪水流出解析に適用されている 他、「損失項を含む貯留関数法」を用いて流域流出解析・河道追跡を行う複合流域における 流出解析システムも提供している。

本書のタイトルを第1版としたのは、近い将来、説明が不備な箇所に修正・改良を加える とともに、複合流域における流域流出解析・河道追跡を行う「地下水流出成分を含む貯留 関数法」を出版企画しているからである。本書で解説するシステムは、添付の CD-ROM に 収められているので、パソコンにインストールして利用していただきたい。

平成 16 年 2 月

 (財)北海道河川防災研究センター 研究所長 星 清 〒060-0807 札幌市北区北7条西4丁目5-1 伊藤110ビル Tel:011-729-8141; Fax:011-729-3380 E-mail:<u>k.hoshi@bousai.or.jp</u> システムインストールにおける注意事項

利用できる環境

以下のいずれかのOSが搭載されていること

CD-ROMに掲載されている対話式洪水流出計算システムは、下記の利用環境にて動作 確認をしておりますが、必ずしもお使いのパソコン上での動作を保障しているものではあ りません。

Microsoft Windows 98 (SP1 以上) Microsoft Windows 2000 (SP 2 以上) Microsoft Windows XP (SP 1 以上) Microsoft Windows NT4.0 (SP 6 以上) Microsoft Windows ME

Windows スクリプト 5.0 以上がインストールされていること

(Windows2000 及び WindowsXP では標準でインストール済み)

MDAC (Microsoft Data Access Component) 2.5 以上がインストールされていること (Windows2000 及び WindowsXP では標準でインストール済み)

システムインストール時に、 Windows スクリプト及び MDAC についてコンポーネントの有無とバージョンをチェックし、存在しない場合又は旧バージョンの場合にのみ 及び のインストールを自動で行います。

1.はじめに

これまで長年に亘って研究・開発してきた種々のタイプの一般化貯留関数法をもとにして、 パソコン上で簡単に計算できる洪水流出計算システムを作成した。計算プログラムは参考 文献 1)~4)に示されるフォートランプログラムをもとにしており、より汎用性を持つよう 改良を加えてある。

本書は、この洪水流出計算システムの使い方を解説したものである。(手法の詳細な説明 は参考文献を参照のこと)

本書の構成は、次のようになっている。流出計算手法を熟知している人も、全項目につい てひととおり目を通してからシステムを使うことを薦める。

本書のシステムで採用している流 出解析手法と、例として使用したデ ータを説明した。

4 種の手法を概略説明し、サンプル データを適用した結果を示す。

システムの画面を示しながら、使い 方を解説した。

参考文献

	文 献 名	著者・発行者	年月
1)	実用的な洪水流出計算法	北海道開発局土木試験所 河川研究室	1987(昭和 62)年 3 月
2)	現場のための水文学	北海道開発局開発土木研究所 若手水文学研究会	1994(平成 6)年 10 月
3)	一般化貯留関数法による流 域流出解析・河道洪水追跡 実用計算法	(財)北海道河川防災研究セン ター・研究所	2001(平成 13)年 5 月
4)	単一流域を対象とした貯留 関数法の精度比較	(財)北海道河川防災研究セン ター・研究所	2002(平成 14)年 10 月

2. 流出解析手法とデータについて

2.1 流出解析手法

本書において解説する流出計算手法は、次の4手法である。

1)	単流域解析
	有効雨量を用いた貯留関数法(一般化貯留関数法)
	 損失項を含む貯留関数法(1段タンク型貯留関数法)
	地下水流出を含む貯留関数法(2段タンク型貯留関数法)
2)	流域分割解析(河道追跡つき)
	複合流域の洪水流出計算法(1段タンク型貯留関数法)

2.2 使用データ

本書においては、以下に示す過去の洪水例を各種流出解析手法に適用する。 留萌川幌糠 昭和 63 年 8 月 24 日 16 時 ~ 30 日 11 時(140 時間) 流量,雨量及び面積のデータは表 2.2 に示す。

河道	α	т	L(m)
А	1.4472	0.8086	2,470
В	1.4472	0.8086	11,420
С	1.4891	0.8658	2,010
D	1.4472	0.8086	10,070

河道データの作り方等詳細は文献 3)を参照のこと

表 2.2(1)

留萌川幌糠洪水例(昭和63年8月24日16時~30日11時 140時間)

	流域面	積(Km ²)	168.5	51.0	5.7	11.6	22.1	4.6	44.6	17.5	11.4
			达拉亚均			公割法	あの 涼志	亚均雨景	(mm/hr)		
	流量	流出高	<u> </u>		1	刀刮加塔	3,00///[13,1	丁均时里	(1111177117)		
時間	(m ³ /s)	(mm/hr)	雨重 (mm/hr)	1-流域	2-流域	3-流域	4-流域	5-流域	6-流域	7-流域	8-流域
1	0.32	0.0068	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.32	0.0068	0.06	0.00	0.00	0.00	0.07	0.36	0.04	0.05	0.32
3	0.35	0.0075	0.30	0.32	0.00	0.50	0.46	0.36	0.04	0.51	0.57
4	0.35	0.0075	0.26	0.32	0.00	0.50	0.39	0.00	0.00	0.51	0.41
5	0.35	0.0075	0.05	0.00	0.00	0.00	0.07	0.36	0.04	0.02	0.22
6	0.35	0.0075	0.62	0.86	0.63	1.00	0.85	0.24	0.00	0.99	0.73
7	0.39	0.0083	0.18	0.00	0.00	0.00	0.07	0.39	0.50	0.04	0.28
8	0.39	0.0083	1.74	1.88	2.52	1.50	1.93	3.54	1.23	1.51	2.25
9	0.42	0.0090	3.49	3.60	3.78	3.50	3.42	3.03	3.44	3.51	3.28
10	0.53	0.0113	2.09	2.19	2.52	2.00	2.04	2.13	2.00	2.01	2.01
11	0.57	0.0122	0.37	0.55	0.63	0.50	0.46	0.24	0.00	0.51	0.41
12	0.66	0.0141	0.26	0.32	0.00	0.50	0.39	0.00	0.00	0.50	0.38
13	0.90	0.0192	0.51	0.32	0.00	0.50	0.60	1.11	0.59	0.50	0.84
14	1.11	0.0237	0.42	0.32	0.00	0.50	0.46	0.39	0.50	0.49	0.50
15	1.29	0.0276	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03
16	1.35	0.0288	0.38	0.32	0.00	0.50	0.39	0.02	0.46	0.49	0.35
1/	1.42	0.0303	0.11	0.23	0.63	0.00	0.07	0.24	0.00	0.01	0.03
18	1.42	0.0303	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	1.42	0.0303	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	1.42	0.0303	0.03	0.00	0.00	0.00	0.05	0.29	0.03	0.00	0.12
21	1.35	0.0288	0.26	0.31	0.00	0.50	0.39	0.00	0.00	0.50	0.38
22	1.29	0.0276	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	1.23	0.0263	0.13	0.00	0.00	0.00	0.00	0.02	0.40	0.02	0.06
24	1.83	0.0391	18.70	20.63	32.76	13.50	16.78	21.32	18.53	13.70	10.87
20	0.00 15.00	0.1200	5.20 5.70	0.14 4.57	0.02	7.00	0.40	4.94	3.20	7.39	0.30
20	10.20	0.3200	2.70	4.07	0.93	2.00	2.00	0.04	2.40	2.02	2.10
21	21.02	0.4019	2.30	2.31	1.99	2.00	2.20	1.44	2.40	2.40	1.90
20	20.21	0.0794	1.00	24.90	10.26	28.00	20.12	1.30	10.12	29.17	25.01
20	104.40	2 2305	75 30	82.50	81.00	83.00	80.81	70.51	50.10	82.17	75.42
31	250.00	5 3/32	32.06	33.78	40.21	30.00	32.63	12.02	32.49	20.81	32.76
32	348 92	7 4547	8.21	8.06	645	9.00	8.18	5 14	8.65	8 90	7 42
33	393.27	8 4022	9.95	8.63	11 42	7.00	7.04	678	16.04	6.93	5.78
34	434.39	9 2807	27 10	27.16	40.21	19.50	23.04	34 84	32.95	19.32	21.80
35	483.73	10.3349	12.75	12.62	21.34	7.50	9.21	14.35	17.93	7.59	8.32
36	524.07	11.1967	14.35	11.65	17.87	8.00	9.83	16.52	24.29	8.03	9.83
37	568.93	12.1552	39.60	40.55	43.19	39.00	40.98	48.54	36.71	38.54	40.80
38	613.78	13.1134	12.58	12.47	12.41	12.50	12.27	11.33	12.83	12.78	13.00
39	579.08	12.3720	1.28	1.00	0.99	1.00	1.05	1.33	1.96	1.00	1.12
40	544.37	11.6305	0.09	0.18	0.50	0.00	0.05	0.19	0.00	0.02	0.06
41	509.67	10.8891	4.87	5.35	5.96	5.00	5.16	5.58	3.65	5.12	5.54
42	474.96	10.1475	8.65	9.24	7.94	10.00	9.61	8.18	6.18	10.25	10.53
43	440.26	9.4061	5.49	5.04	4.26	5.50	4.86	2.41	6.58	5.88	5.72
44	405.55	8.6646	1.85	1.60	0.91	2.00	1.70	0.64	2.35	2.05	1.77
45	370.85	7.9232	0.32	0.43	0.30	0.50	0.44	0.18	0.01	0.51	0.43
46	336.14	7.1816	0.05	0.11	0.30	0.00	0.03	0.11	0.00	0.00	0.00
47	301.44	6.4403	0.32	0.43	0.30	0.50	0.44	0.18	0.01	0.49	0.37
48	266.73	5.6987	0.06	0.11	0.30	0.00	0.03	0.11	0.00	0.02	0.06
49	232.03	4.9573	0.26	0.32	0.00	0.50	0.39	0.00	0.00	0.51	0.41
50	197.32	4.2157	0.06	0.11	0.30	0.00	0.03	0.11	0.00	0.03	0.12
51	162.62	3.4744	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.12
52	154.29	3.2964	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.06
53	145.96	3.1184	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

留萌川幌糠洪水例(昭和63年8月24日16時~30日11時 140時間)

表 2.2(2)

	流域面	積(Km ²)	168.5	51.0	5.7	11.6	22.1	4.6	44.6	17.5	11.4
	流量	法山宣	流域平均		-	分割流均	或の流域	平均雨量	(mm/hr)		
時間	/////////////////////////////////////	加山向 (mm/hr)	雨量 (mm/hr)	1-流域	2-流域	3-流域	4-流域	5-流域	6-流域	7-流域	8-流域
54	137.63	2.9405	0.05	0.11	0.30	0.00	0.03	0.11	0.00	0.00	0.00
55	129.30	2.7625	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56	109.65	2.3427	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57	100.67	2.1508	0.26	0.32	0.00	0.50	0.39	0.00	0.00	0.49	0.35
58	89.86	1.9199	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
59	83.00	1.7733	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60	76.82	1.6413	0.01	0.00	0.00	0.00	0.01	0.06	0.01	0.00	0.03
61	71.65	1.5308	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62	69.94	1.4943	0.05	0.11	0.30	0.00	0.03	0.11	0.00	0.00	0.00
63	68.24	1.4579	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
64	66.53	1.4214	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65	64.82	1.3849	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
66	63.11	1.3483	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
67	61.41	1.3120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
68	59.70	1.2755	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
69	57.99	1.2390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70	56.29	1.2026	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
71	54.58	1.1661	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
72	52.87	1.1296	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
73	51.17	1.0932	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
74	49.46	1.0567	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
75	47.75	1.0202	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76	46.04	0.9836	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
77	44.34	0.9473	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
/8	42.63	0.9108	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
/9	40.92	0.8743	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80	39.22	0.8379	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
81	37.51	0.8014	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
82	35.80	0.7649	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
83	34.09	0.7283	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
04 95	32.39	0.6555	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
86	28.07	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
87	20.37	0.0109	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
88	25.56	0.5020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
89	23.85	0.5401	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90	22.15	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91	20.44	0.4367	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	18 73	0 4002	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
93	17.02	0.3636	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03
94	15.32	0.3273	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
95	13.61	0.2908	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
96	13.61	0.2908	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
97	13.61	0.2908	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
98	13.61	0.2908	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
99	14.30	0.3055	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	11.42	0.2440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
101	11.42	0.2440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03
102	10.39	0.2220	0.16	0.00	0.00	0.00	0.05	0.31	0.50	0.01	0.15
103	10.00	0.2136	0.12	0.00	0.00	0.00	0.00	0.02	0.46	0.00	0.00
104	9.80	0.2094	0.16	0.00	0.00	0.00	0.05	0.31	0.50	0.01	0.15
105	9.61	0.2053	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

) 留萌川幌糠洪水例(昭和63年8月24日16時~30日11時 140時間)

表 2.2(3)

	流域面	<u>積(Km²)</u>	168.5	51.0	5.7	11.6	22.1	4.6	44.6	17.5	11.4
	流量	流出高	流域平均			分割流均	或の流域	平均雨量	(mm/hr)		
時間	(m ³ /s)	(mm/hr)	™≞ (mm/hr)	1-流域	2-流域	3-流域	4-流域	5-流域	6-流域	7-流域	8-流域
106	9.42	0.2013	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
107	9.04	0.1931	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
108	9.04	0.1931	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
109	8.67	0.1852	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110	8.49	0.1814	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
111	8.13	0.1737	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
112	7.96	0.1701	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
113	7.78	0.1662	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
114	7.61	0.1626	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
115	7.44	0.1590	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
116	7.27	0.1553	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
117	7.27	0.1553	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
118	7.11	0.1519	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
119	6.94	0.1483	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
120	6.78	0.1449	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
121	6.62	0.1414	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
122	6.46	0.1380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
123	6.46	0.1380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
124	6.46	0.1380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
125	6.46	0.1380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
126	6.30	0.1346	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
127	6.15	0.1314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
128	6.00	0.1282	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
129	5.85	0.1250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130	5.85	0.1250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
131	5.70	0.1218	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
132	5.70	0.1218	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
133	5.55	0.1186	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
134	5.55	0.1186	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
135	5.26	0.1124	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
136	5.26	0.1124	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
137	5.12	0.1094	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
138	5.12	0.1094	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
139	4.98	0.1064	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
140	4.84	0.1034	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.3 モデル定数最適化の目的関数と精度評価指標

本書で取り扱う各種流出計算手法のモデル定数を同定するにあたっては、次式で表される J/Nを最適化の目的関数として使用している。すなわち、J/Nができるだけ小さくなる ように、ニュートン法を用いてモデル定数の最適値を探索している。

最適化の目的関数
$$J/N = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{q_{oi} - q_{ci}}{\sqrt{q_{oi}}} \right\}^2$$

ここに、 q_{oi} :観測流量(m³/s)、 q_{ci} :計算流量(m³/s)、N:データ数

なお、ここで使用する q_{oi} 及び q_{ci} は手法にかかわらず全流量であるが、最適化(試算)の 過程において「有効雨量を用いた貯留関数法」では直接流出高、「地下水流出を含む貯留関 数法」では直接(表面)流出量をJ/Nの計算に使用している。

上記の最適化過程において、下記の各種精度評価指標も算定している。「有効雨量を用いた貯留関数法」以外の手法については、下記指標のうち、*J_{RE}*,*RMSE*,*E*について、試算の過程における最小値のケースを作表・作図できるようにしてある。

相対誤差
$$J_{RE} = \frac{1}{N} \sum_{i=1}^{N} \frac{|q_{oi} - q_{ci}|}{q_{oi}}$$

2 乗平均誤差 $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (q_{oi} - q_{ci})^2}$

河川砂防技術基準(案)に示される誤差指標 E

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{q_{oi} - q_{ci}}{q_{op}} \right)^{2}$$

流出波形の誤差
$$E_w = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{q_{oi} - q_{ci}}{q_{oi}} \right)^2$$

流出ボリューム誤差
$$E_v = \frac{\sum_{i=1}^{N} q_{oi} - \sum_{i=1}^{N} q_{ci}}{\sum_{i=1}^{N} q_{oi}}$$

ピーク流量誤差
$$E_p = \frac{q_{op} - q_{cp}}{q_{op}}$$

ここに、 q_{oi} :観測流量(m³/s), q_{op} :観測ピーク流量(m³/s), q_{ci} :計算流量(m³/s), q_{cp} :計算ピーク流量(m³/s), N:データ数

- 3.有効雨量を用いた貯留関数法(単流域解析)
- 3.1 手法の特徴

本手法はKinematic Wave 法を集中化した貯留関数法で、その特徴は以下のとおりである。

a) 全流出を直接流出成分と基底流出成分に分離し、直接流出成分についてのみ解析す る。

> 直接流出成分・・・流域の表面付近を流れ流出する比較的早い流出成分 基底流出成分・・・流域に浸透して流出する遅い流出成分

- b) 解析期間において、直接流出成分の総量と雨量の総量が等しくなるように、観測降雨量に一定の割合(流出率 f)を乗ずることで求めた有効雨量を用いる。 有効雨量・・・雨量のうち雨水の蒸発散や浸透により基底流出成分となる分を取り除いた成分。直接流出成分と等しくなる雨量である。
- c) ファクター f_cを決定することで、雨量からハイドログラフを再現できる。

3.2 流出モデル

図3.1は有効雨量を用いた貯留関数法を表現している。

図 3.1 有効雨量を用いた貯留関数モデル

ここに、s:貯留高(mm), r_e :有効雨量(mm/h), q:流出高(mm/h), k_1 , k_2 :貯留係数、 p_1 , p_2 :貯留指数、A:流域面積(km²), $\overline{r_e}$:平均有効雨量強度(mm/h), n:等価粗度、i: 斜面勾配、 f_e :ファクター

上式は複雑に見えるが、ファクター f_c の値が決まれば、雨量から流量の再現が可能となる。

(1),(2)式を用いた流量の再現計算方法についての詳細は文献1)を参照されたい。

3.3 f. の最適化法

ファクター f. の最適値を決定するために、次式で表わされる目的関数を設定する。

$$J / N = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{q_{oi} - q_{ci}}{\sqrt{q_{oi}}} \right\}^{2}$$

ここに、 q_{oi} :観測直接流出高(mm/h) q_{ci} :計算直接流出高(mm/h) N:データ数

ファクター f_c を仮定して流出計算を行い、J/N が最も小さくなる f_c を最適値とする。

図 3.2 定数 (f_c)解析の手順

3.4 流出成分の分離

有効雨量を用いた貯留関数法による解析においては、**有効雨量と直接流出成分を用いる。** 観測データは雨量と流量であるため、観測データから有効雨量と直接流出成分に分離する 必要がある。まず、全流出を基底流出成分と直接流出成分に分離する。

1)解析に当たっては、流域面積の大きさによる解析への影響を取り除くため、以下の式に より流量(m³/s)を流出高(mm/h)に変換する。

 $流出高(mm/h) = \frac{ 流量(m^3/s) \times 3600(s/h) \times 1000(mm/m)}{ 流域面積(km^2) \times 1000^2(m/km)} = \frac{ 流量(m^3/s) \times 3.6}{ 流域面積(km^2)}$

2) 流出高のデータ(表3.1)を用い、対数プロットしたハイドログラフを描く(図3.3)。

3) ハイドログラフの立ち上がり点を決定する。(図3.3ア)本事例では23時間目とした。

4) 減水部に2本の近似直線を引く。(イ-ウとウ-エ)

5) ピークからみて、2番目の折点(第2折点:図3.3 エ)を直接流出成分と基底流出成分 の境目とする。本事例では105時間目とした。

6)対数プロットの立ち上がり点(ア)と第2折点(エ)を、普通プロットのグラフ(図3.4) にとり、直線で結ぶ(図3.4 オ)。直線の上が直接流出成分、下が基底流出成分となる。

7) 直線の傾きと切片を用いた以下の式から、各時間の基底流出高を算出する。

第2折点流出高 - 立ち上がり点流出高

第2折点時間 - 立ち上がり点時間

0.2111 - 0.0270

= 0.0270+(立ち上がり点からの時間)× ______ 105 - 23

8) 全流出高から基底流出高を引き直接流出高を算出する。

基底流出高 = 立ち上がり点流出高 + 時間 x

直接流出高 = 全流出高 - 基底流出高

= -

9) 立ち上がり点(ア)から第2折点(エ)までが、直接流出成分の流出期間であり、解析 をおこなう対象期間である。この時間を解析時間 N とする。

	表 3.1(1)		流出計算	長						
時間	観測流量 (m ³ /s)	観測 流出高 (mm/h)	流域平均 雨量 (mm/h)	基底 流出高 (mm/h)	直接 流出高 (mm/h)	, 雨量(初期 _{損失を除()} (mm/h)	有効雨量 (mm/h)	計算直接 流出高 (mm/h)	計算 流出高 (mm/h)	計算 流量 (m ³ /s)
1	0.32	0.0068	0.00							
2	0.32	0.0068	0.06							
3	0.35	0.0075	0.30							
4	0.35	0.0075	0.26							
5	0.35	0.0075	0.05							
6	0.35	0.0075	0.62							
7	0.39	0.0083	0.18							
8	0.39	0.0083	1.74							
9	0.42	0.0090	3.49							
10	0.53	0.0113	2.09							
11	0.57	0.0122	0.37							
12	0.66	0.0141	0.26							
13	0.90	0.0192	0.51							
14	1.11	0.0237	0.42							
15	1.29	0.0276	0.00							
16	1.35	0.0288	0.38							
17	1.42	0.0303	0.11							
18	1.42	0.0303	0.00							
19	1.42	0.0303	0.00							
20	1.42	0.0303	0.03							
21	1.35	0.0288	0.26							
22	1.29	0.0276	0.00							
23	1.23	0.0263	0.13	0.0263	0.0000	0.13	0.10	0.0020	0.0283	1.33
24	1.83	0.0391	18.70	0.0285	0.0106	18.70	13.70	0.0019	0.0304	1.42
25	5.85	0.1250	5.28	0.0306	0.0943	5.28	3.87	0.0223	0.0529	2.48
26	15.26	0.3260	5.70	0.0328	0.2932	5.70	4.18	0.0744	0.1072	5.02
27	21.62	0.4619	2.30	0.0350	0.4269	2.30	1.68	0.1586	0.1937	9.06
28	27.12	0.5794	1.55	0.0372	0.5422	1.55	1.14	0.2608	0.2980	13.95
29	39.21	0.8377	25.53	0.0394	0.7983	25.53	18.70	0.4586	0.4980	23.31
30	104.40	2.2305	75.39	0.0416	2.1889	75.39	55.23	1.2041	1.2456	58.30
31	250.09	5.3432	32.96	0.0437	5.2994	32.96	24.14	2.9499	2.9937	140.12
32	348.92	7.4547	8.21	0.0459	7.4087	8.21	6.01	5.1467	5.1926	243.04
33	393.27	8.4022	9.95	0.0481	8.3541	9.95	7.29	7.1551	7.2032	337.15
34	434.39	9.2807	27.10	0.0503	9.2304	27.10	19.85	9.0786	9.1289	427.28
35	483.73	10.3349	12.75	0.0525	10.2824	12.75	9.34	10.8070	10.8595	508.28
36	524.07	11.1967	14.35	0.0547	11.1421	14.35	10.51	12.0250	12.0796	565.39
37	568.93	12.1552	39.60	0.0568	12.0983	39.60	29.01	13.3676	13.4244	628.34
38	570.00	13.1134	12.38	0.0590	13.0544	12.38	9.22	14.0191	14.0781	087.02
39	579.08	11.6205	1.28	0.0612	11 5671	1.28	0.94	14.8782	14.9394	666.40
40	500.67	10,000	0.09	0.0656	11.3071	0.09	0.07	12,0057	14.2393	611.01
41	309.67	10.0091	4.07	0.0000	10.0233	4.07	3.37	11 0117	11 9704	011.01 EEC.02
42	474.90	0.4061	5.03	0.0078	0.2262	5.00	4.02	10.6907	10,7507	502.61
43	440.20	9.4001 8.6646	1.45	0.0099	8 502/	1.49	4.02	9.5620	9.63/1	150.01
44	370.85	7 0222	0.32	0.0721	7 8/80	0.32	0.23	9.3020	9.0541	307.65
40	336 1/	7 1 9 1 6	0.52	0.0745	7 1051	0.52	0.23	7 2222	7 /002	3/6 22
40	301 4/	6 4 4 0 3	0.00	0.0787	6 3616	0.00	0.04	6 3240	6 4027	200 68
48	266.73	5 6987	0.02	0.0800	5 6178	0.02	0.23	5 4435	5 5244	258.57
49	232.03	4,9573	0.00	0.0830	4 8743	0.00	0.04	4 6845	4,7676	223.15
50	197.32	4,2157	0.06	0.0852	4 1305	0.06	0.10	4 0391	4,1243	193.04
51	162.62	3,4744	0.00	0.0874	3 3870	0.00	0.01	3 4921	3,5796	167.54
52	154.29	3.2964	0.01	0.0896	3.2068	0.01	0.01	3.0306	3.1202	146.04
53	145.96	3.1184	0.00	0.0918	3.0267	0.00	0.00	2.6421	2.7339	127.96

	表 3.1(2)		<u>流出計算</u>	表						
						,				
時間	観測流量 (m ³ /s)	観測 流出高 (mm/h)	流域平均 雨量 (mm/h)	基底 流出高 (mm/h)	直接 流出高 (mm/h)	雨量(初期 損失を除く) (mm/h)	有効雨量 (mm/h)	計算直接 流出高 (mm/h)	計算 流出高 (mm/h)	計算 流量 (m ³ /s)
54	137.63	2.9405	0.05	0.0940	2.8465	0.05	0.04	2.3153	2.4093	112.77
55	129.30	2.7625	0.00	0.0961	2.6663	0.00	0.00	2.0401	2.1362	99.99
56	109.65	2.3427	0.00	0.0983	2.2443	0.00	0.00	1.8071	1.9054	89.18
57	100.67	2.1508	0.26	0.1005	2.0503	0.26	0.19	1.6112	1.7117	80.12
58	89.86	1.9199	0.00	0.1027	1.8172	0.00	0.00	1.4454	1.5481	72.46
59	83.00	1.7733	0.00	0.1049	1.6684	0.00	0.00	1.3027	1.4075	65.88
60	76.82	1.6413	0.01	0.1071	1.5342	0.01	0.01	1.1793	1.2864	60.21
61	71.65	1.5308	0.00	0.1092	1.4216	0.00	0.00	1.0722	1.1815	55.30
62	69.94	1.4943	0.05	0.1114	1.3828	0.05	0.04	0.9791	1.0906	51.05
63	68.24	1.4579	0.00	0.1136	1.3443	0.00	0.00	0.8978	1.0114	47.34
64	66.53	1.4214	0.00	0.1158	1.3056	0.00	0.00	0.8260	0.9418	44.08
65	64.82	1.3849	0.00	0.1180	1.2669	0.00	0.00	0.7625	0.8805	41.21
66	63.11	1.3483	0.00	0.1202	1.2282	0.00	0.00	0.7061	0.8262	38.67
6/	61.41	1.3120	0.00	0.1223	1.1897	0.00	0.00	0.6557	0.7781	36.42
60	59.70	1.2755	0.00	0.1245	1.1510	0.00	0.00	0.6106	0.7352	34.41
70	57.99	1.2390	0.00	0.1207	1.1122	0.00	0.00	0.5701	0.6906	32.01
70	54.59	1.2020	0.00	0.1209	1.0757	0.00	0.00	0.5555	0.0024	31.00
72	52.97	1 1 2 0 6	0.00	0.1311	0.0063	0.00	0.00	0.3003	0.0314	29.00
72	51 17	1.1290	0.00	0.1354	0.9903	0.00	0.00	0.4702	0.0033	20.23
74	49.46	1.0567	0.00	0.1376	0.9570	0.00	0.00	0.4420	0.5765	26.00
75	47.75	1.0307	0.00	0.1370	0.8191	0.00	0.00	0.3948	0.5346	25.00
76	46.04	0.9836	0.00	0.1330	0.8416	0.00	0.00	0.3737	0.5157	20.02
77	44.34	0.9473	0.00	0 1442	0.8031	0.00	0.00	0.3543	0.4985	23.33
78	42.63	0.9108	0.00	0 1464	0 7644	0.00	0.00	0.3363	0.4827	22.59
79	40.92	0.8743	0.00	0.1485	0.7257	0.00	0.00	0.3197	0.4683	21.92
80	39.22	0.8379	0.00	0.1507	0.6872	0.00	0.00	0.3043	0.4551	21.30
81	37.51	0.8014	0.00	0.1529	0.6485	0.00	0.00	0.2900	0.4430	20.73
82	35.80	0.7649	0.00	0.1551	0.6098	0.00	0.00	0.2767	0.4318	20.21
83	34.09	0.7283	0.00	0.1573	0.5710	0.00	0.00	0.2643	0.4216	19.73
84	32.39	0.6920	0.00	0.1595	0.5325	0.00	0.00	0.2527	0.4122	19.29
85	30.68	0.6555	0.00	0.1616	0.4938	0.00	0.00	0.2418	0.4035	18.89
86	28.97	0.6189	0.00	0.1638	0.4551	0.00	0.00	0.2317	0.3955	18.51
87	27.27	0.5826	0.00	0.1660	0.4166	0.00	0.00	0.2221	0.3881	18.17
88	25.56	0.5461	0.00	0.1682	0.3779	0.00	0.00	0.2131	0.3813	17.85
89	23.85	0.5096	0.00	0.1704	0.3392	0.00	0.00	0.2047	0.3751	17.56
90	22.15	0.4732	0.00	0.1726	0.3007	0.00	0.00	0.1967	0.3693	17.28
91	20.44	0.4367	0.00	0.1747	0.2620	0.00	0.00	0.1892	0.3640	17.04
92	18.73	0.4002	0.00	0.1769	0.2232	0.00	0.00	0.1821	0.3590	16.81
93	17.02	0.3636	0.00	0.1791	0.1845	0.00	0.00	0.1754	0.3545	16.59
94	15.32	0.3273	0.00	0.1813	0.1460	0.00	0.00	0.1691	0.3504	16.40
95	13.61	0.2908	0.00	0.1835	0.1073	0.00	0.00	0.1630	0.3465	16.22
96	13.61	0.2908	0.00	0.1857	0.1051	0.00	0.00	0.1573	0.3430	16.05
97	13.61	0.2908	0.00	0.1879	0.1029	0.00	0.00	0.1519	0.3398	15.90
98	13.61	0.2908	0.00	0.1900	0.1007	0.00	0.00	0.1467	0.3368	15.76
99	14.30	0.3055	0.00	0.1922	0.1133	0.00	0.00	0.1419	0.3341	15.64
100	11.42	0.2440	0.00	0.1944	0.0496	0.00	0.00	0.1372	0.3316	15.52
101	10.20	0.2440	0.00	0.1900	0.0474	0.00	0.00	0.1327	0.3293	15.41
102	10.39	0.2220	0.10	0.1900	0.0232	0.10	0.12	0.1200	0.3210	10.00
103	0.00	0.2130	0.12	0.2010	0.0127	0.12	0.09	0.1200	0.3203	15.20
104	9.00	0.2053	0.10	0.2053	0.0002	0.10	0.12	0.0000	0.3200	9.61

	表 3.1(3)		流出計算	表						
						,				
時間	観測流量 (m ³ /s)	観測 流出高 (mm/h)	流域平均 雨量 (mm/h)	基底 流出高 (mm/h)	直接 流出高 (mm/h)	雨量(初期 損失を除く) (mm/h)	有効雨量 (mm/h)	計算直接 流出高 (mm/h)	計算 流出高 (mm/h)	計算 流量 (m ³ /s)
106	9.42	0.2013	0.00	0.2013	0.0000	0.00	0.00	0.0000	0.2013	9.42
107	9.04	0.1931	0.00	0.1931	0.0000	0.00	0.00	0.0000	0.1931	9.04
108	9.04	0.1931	0.00	0.1931	0.0000	0.00	0.00	0.0000	0.1931	9.04
109	8.67	0.1852	0.00	0.1852	0.0000	0.00	0.00	0.0000	0.1852	8.67
110	8.49	0.1814	0.00	0.1814	0.0000	0.00	0.00	0.0000	0.1814	8.49
111	8.13	0.1737	0.00	0.1737	0.0000	0.00	0.00	0.0000	0.1737	8.13
112	7.96	0.1701	0.00	0.1701	0.0000	0.00	0.00	0.0000	0.1701	7.96
113	7.78	0.1662	0.00	0.1662	0.0000	0.00	0.00	0.0000	0.1662	7.78
114	7.61	0.1626	0.00	0.1626	0.0000	0.00	0.00	0.0000	0.1626	7.61
115	7.44	0.1590	0.00	0.1590	0.0000	0.00	0.00	0.0000	0.1590	7.44
116	7.27	0.1553	0.00	0.1553	0.0000	0.00	0.00	0.0000	0.1553	7.27
117	7.27	0.1553	0.00	0.1553	0.0000	0.00	0.00	0.0000	0.1553	7.27
118	7.11	0.1519	0.00	0.1519	0.0000	0.00	0.00	0.0000	0.1519	7.11
119	6.94	0.1483	0.00	0.1483	0.0000	0.00	0.00	0.0000	0.1483	6.94
120	6.78	0.1449	0.00	0.1449	0.0000	0.00	0.00	0.0000	0.1449	6.78
121	6.62	0.1414	0.00	0.1414	0.0000	0.00	0.00	0.0000	0.1414	6.62
122	6.46	0.1380	0.00	0.1380	0.0000	0.00	0.00	0.0000	0.1380	6.46
123	6.46	0.1380	0.00	0.1380	0.0000	0.00	0.00	0.0000	0.1380	6.46
124	6.46	0.1380	0.00	0.1380	0.0000	0.00	0.00	0.0000	0.1380	6.46
125	6.46	0.1380	0.00	0.1380	0.0000	0.00	0.00	0.0000	0.1380	6.46
126	6.30	0.1346	0.00	0.1346	0.0000	0.00	0.00	0.0000	0.1346	6.30
127	6.15	0.1314	0.00	0.1314	0.0000	0.00	0.00	0.0000	0.1314	6.15
128	6.00	0.1282	0.00	0.1282	0.0000	0.00	0.00	0.0000	0.1282	6.00
129	5.85	0.1250	0.00	0.1250	0.0000	0.00	0.00	0.0000	0.1250	5.85
130	5.85	0.1250	0.00	0.1250	0.0000	0.00	0.00	0.0000	0.1250	5.85
131	5.70	0.1218	0.00	0.1218	0.0000	0.00	0.00	0.0000	0.1218	5.70
132	5.70	0.1218	0.00	0.1218	0.0000	0.00	0.00	0.0000	0.1218	5.70
133	5.55	0.1186	0.00	0.1186	0.0000	0.00	0.00	0.0000	0.1186	5.55
134	5.55	0.1186	0.00	0.1186	0.0000	0.00	0.00	0.0000	0.1186	5.55
135	5.26	0.1124	0.00	0.1124	0.0000	0.00	0.00	0.0000	0.1124	5.26
136	5.26	0.1124	0.00	0.1124	0.0000	0.00	0.00	0.0000	0.1124	5.26
137	5.12	0.1094	0.00	0.1094	0.0000	0.00	0.00	0.0000	0.1094	5.12
138	5.12	0.1094	0.00	0.1094	0.0000	0.00	0.00	0.0000	0.1094	5.12
139	4.98	0.1064	0.00	0.1064	0.0000	0.00	0.00	0.0000	0.1064	4.98
140	4.84	0.1034	0.00	0.1034	0.0000	0.00	0.00	0.0000	0.1034	4.84
計	11544.33	246.6444	327.34	14.6243	231.6362	316.21	231.64	224.6033	239.2276	11197.18

流出率= 0.7325

3.5 有効雨量の算出

次に、雨量から有効雨量の算出について述べる。

- 10)各時間の直接流出高(表3.1)をすべて足し、総直接流出高を求める。(表3.1の計)
- 11)データの初めから立ち上がり点の前までの雨量(表 3.1 1~22)を初期降雨損失量とし、それ以降の流域平均雨量を合計して総雨量を求める。(表 3.1 の計)
- 12)以下の式より総雨量の何パーセントが直接流出として流出しているかを求め、流出率 *f* とする。(表 3.1(2)の最下段)

流出率
$$f = \frac{総直接流出高}{総雨量} = \frac{表 3.1 \quad \text{の計}}{表 3.1 \quad \text{の計}}$$

13)雨量()に流出率(表3.1(2)の最下段)を乗じて有効雨量を求める。()

= f ×

14)解析期間中において有効雨量がゼロでない期間を降雨継続期間とする。本事例の場合、 23h から 105h までの間に有効雨量がゼロでない時間が 37 時間ある。

15)平均有効雨量強度 ア を求める。

$$\overline{r_e} = \frac{総有効雨量}{降雨継続時間} = \frac{表3.1 \quad O計}{37} = \frac{238.14}{37} = 6.44 \text{ mm/h}$$

3.6 ファクター f_c の探索

ファクター *f_c* に適当な値を代入し、最もハイドログラフの再現が良くなる値を探す。 (試行錯誤)

16) f_c に適当な値を代入し、(2)式のうち以下の式によりパラメータ k_1, k_2 を確定する。

$$k_1 = 2.8235 f_c A^{0.24}$$

$$k_2 = 0.2835 k_1^2 \overline{r_e}^{-0.2648}$$

- 17) 確定したパラメータ k₁, k₂ を用い、(1)・(2) 式を用いて有効雨量より直接流出高を再現 する。(直接流出高算出手法の詳細については文献1)を参照)
- 18)実測流量から分離した直接流出高と 17)で算出した計算直接流出高の誤差を表わす以下 の目的関数 J / N を設定する。

目的関数
$$J/N = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{ \ge 1 \le 1}{\sqrt{\ge 1}} \frac{1}{\sqrt{\ge 1}} \right]^2$$

このとき、実測直接流出高は正の値をとらなければならないが、実測直接流出高の初め と最後の値(この事例では23・105h)がゼロとなるため、目的関数は24~104hの間で計算 する。すなわち *N* = 81 となる。

目的関数 J/N の値が小さいほど再現値と実測値が合っていることになる。

ファクター f_c の値を少しずつ (今回は、0.01 刻みとした。)変えて計算を行い、目的関数 J/N の最も小さくなるファクター f_c を最適値とする。探索結果を表 3.2 に示す。

試算回数	f_c	k_1	k_2	J / N
CASE 1	2.70	26.094	117.905	0.20126
CASE 2	2.71	26.190	118.780	0.20092
CASE 3	2.72	26.287	119.658	0.20068
CASE 4	2.73	26.384	120.540	0.20055
CASE 5	2.74	26.480	121.424	0.20053
CASE 6	2.75	26.577	122.312	0.20061
CASE 7	2.76	26.674	123.203	0.20081
CASE 8	2.77	26.770	124.098	0.20110
CASE 9	2.78	26.867	124.995	0.20151
CASE10	2.79	26.963	125.896	0.20201

表 3.2 最適值探索過程

探索の結果(表3.2)より最適値は以下の値となった。

ファクター
$$f_c$$
 =2.74
貯留係数 k_1 = 26.480、 k_2 = 121.424

上記の値を用いた再現結果を示す(図3.5)。

19)計算直接流出高に7)で取り除いた基底流出高を足し、計算流出高とする。()

20)計算流出高を計算流量に変換する。()

計算流量(全流量)による再現結果を図3.6に示す。

表 3.3 有効雨量を用いた貯留関数法の定数解析結果

試算回数	5 回	Ε	0.0021
f_c	2.74	$E_{_{w}}$	0.0624
J / N	3.8335	$E_{_{v}}$	0.0285
${J}_{\scriptscriptstyle R\!E}$	0.1630	E_p	-0.1392
RMSE	27.9314	\mathcal{Q}_{cp}	699.25

 Q_{cp} :計算ピーク流量(m³/s)

3.7 ファクター f_c の感度

ファクター f_c を決定する上で参考となるように、ファクター f_c が再現ハイドログラフ に与える影響を示す。

解析例ではファクター f_c の最適値を 2.74 に決定したが、この値を 2.30 から 3.10 まで、 0.1 刻みで変化させ、再現計算を行った結果を示す(図 3.7)。結果を見ると次の傾向が見 られる。

図 3.7 ファクター f_c が再現ハイドログラフに与える影響

・ファクター f_c が小 ビーク値が高い ハイドログラフがとがる 減衰が早い

・ファクター *f_c* が大 ピーク値が低い ハイドログラフがつぶれる 立ち上がりが遅い 4.損失項を含む貯留関数法(1段タンク型貯留関数モデル:単流域解析)

4.1 手法の特徴

本手法は、貯留関数法に損失機構を取り入れ、**観測雨量と観測流量を直接用いる**ため、有 効雨量の算定や直接流出成分と基底流出成分の分離といった主観に左右される要素が排除 されることが特徴である。

4.2 流出モデル

図4.1は損失項を含む貯留関数法を表現している。

図 4.1 損失項を含む貯留関数モデル

ここに、s:貯留高(mm)、r:観測雨量(mm/h)、q:観測流出高(mm/h)、b:損失高(mm/h)、 q_b :地下水流出高(mm/h)、 q_{in} :初期流出高(mm/h)、 k_1 , k_2 :貯留係数、 p_1 , p_2 :貯留指数、 λ :減衰係数、A:流域面積(km²)、 \overline{r} :平均雨量強度(mm/h)、 c_1 , c_2 , c_3 :未知定数

(3),(4)式を用いた流出量の再現計算方法についての詳細は文献3)を参照されたい。

4.3 未知定数*c*₁, *c*₂, *c*₃の最適化法

未知定数 c_1, c_2, c_3 の最適化は観測流量 q_{oi} と計算流量 q_{ci} の誤差を表わす以下の目的関数 J/Nを設定し、これにニュートン法を適用して誤差最小となる未知定数 c_1, c_2, c_3 を計算 する。最適化計算の詳細は文献 3)を参照されたい。

$$J / N = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{q_{oi} - q_{ci}}{\sqrt{q_{oi}}} \right\}^{2}$$

ここに、 q_{oi} :観測流量(m³/s) q_{ci} :計算流量(m³/s) N:データ数

図 4.2 定数 (c₁, c₂, c₃) 解析の手順

4.4 初期流出高 q_{in} と減衰係数 λ の設定

本手法では、(3)式に含まれる地下水流出成分を表わす初期流出高 q_{in} と減衰係数 λ をあらかじめ与えてやる必要がある。

 1)初期流出高 q_{in} は、降雨開始直前の値を用いる。(表 2.1 の 1 時間目の流出高 0.0070 mm/h)
 2)減衰係数 λ はハイドログラフ低減部の標準逓減曲線から得られる流域固有の値で、例え ば表 4.1 に示されるような値である。

表 4.1 は文献 4)に示される北海道内の一級水系(標津川は二級水系)における λ の値を示す。これは2段タンク型で用いる T_c (表 5.1)の逆数である。

)		洪	С	1	<i>c</i> 2		<i>c</i> ₃		減衰係数()		
水	系	名	水	平均	標準偏差	平均	標準偏差	平均	標準偏差	平均	標準偏差
			釵	(µ)	()	(µ)	()	(µ)	()	(µ)	()
天	塩	Ш	51	12.213	5.040	0.143	0.178	1.445	0.406	0.019	0.005
渚	滑	Ш	42	11.193	3.992	0.183	0.124	1.308	0.491	0.017	0.005
湧	別	Л	32	10.157	2.219	0.181	0.072	1.438	0.289	0.014	0.003
常	呂	Ш	34	13.581	3.894	0.123	0.073	1.652	0.488	0.018	0.005
網	走	Ш	20	17.005	4.604	0.094	0.040	2.939	1.259	0.014	0.003
留	萌	Ш	39	11.293	2.816	0.193	0.087	1.477	0.479	0.017	0.010
石	狩	Л	72	11.193	4.320	0.144	0.126	1.848	0.600	0.025	0.014
尻	別	Л	69	12.624	4.172	0.106	0.058	1.854	0.484	0.017	0.004
後記	いわり	別川	65	9.232	2.382	0.148	0.081	1.469	0.396	0.020	0.006
鵡		Ш	34	10.591	2.580	0.146	0.065	1.491	0.680	0.023	0.005
沙	流	Л	60	10.893	2.470	0.130	0.077	1.307	0.357	0.016	0.005
釧	路	Л	42	21.878	7.517	0.078	0.047	3.370	1.287	0.018	0.006
+	勝	Л	86	13.649	4.143	0.114	0.065	1.781	0.789	0.017	0.004
標	津	Л	4	20.465	3.495	0.073	0.007	2.448	0.429	0.012	0.005
全	水	系	650	12.488	5.035	0.135	0.094	1.750	0.824	0.019	0.013

表4.1 水系毎のモデル定数統計量(1段タンク型モデル)

λの値を検討洪水のみによって決定しようとすると、流域の特性から大きくはずれてし まう恐れがある。例えば、留萌川幌糠の昭和63年8月洪水データ(表3.1)を用いて対 数プロットした図3.3の点(ウ)と点(エ)を用いてλを算出すると以下のとおりである。

点ウ:時刻 62(= T_1)で流出高 1.5362 mm/h(= q_1)

点工:時刻 105 (= T_2) で流出高 0.2111 mm/h (= q_2)

$$\therefore \quad \lambda = \frac{\ell_n q_1 - \ell_n q_2}{T_2 - T_1} = \frac{\ell_n (1.5362) - \ell_n (0.2111)}{105 - 62} = 0.0462$$

幌糠における過去の主要な 16 洪水データを、低減部が重なるよう時間軸方向に平行移動してプロットすると図 4.3 のようになる。この図から、減衰係数 λ は 0.0215 程度となることがわかる。昭和 63 年 8 月洪水データだけを用いた場合、図 4.3 の点カと点キを用いて算定したことになり、幌糠の平均的な特性を表わしているとは言い難いことがわかる。

したがって、幌糠の λ としては図 4.3 から得られる 0.0215 が妥当と考えられる。なお、

幌糠のように多くの洪水データが揃っていない場合には、表 4.1 を参考に設定するとよい。

4.5 計算例

留萌川幌糠の昭和 63 年 8 月洪水データに適用した計算例を示す。 ここでは、λ = 0.0215 とした。

試算回数	6 回	J / N	1.8167	$E_{_{w}}$	0.8714			
<i>C</i> ₁	12.9420	$J_{_{R\!E}}$	0.4270	$E_{_{v}}$	0.0189			
<i>C</i> ₂	0.0971	RMSE	9.8855	E_p	0.0471			
<i>C</i> ₃	1.3177	E	0.0003	\mathcal{Q}_{cp}	584.85			

表 4.2 損失項を含む貯留関数法の定数解析結果

 Q_{cp} :計算ピーク流量(m³/s)

表 4.3(1)	留萌		現計算結果	Ę	NO	T	中建达目	计数次目	
	<u>損大項を</u> 1000	るの打留国	<u> 叙法による</u> 24	16	NO 40	◎ 26	天顔流重	訂昇流重 22/07	計昇 (2)
	C1	\sim	C3 24	10	49 50	0.20	232.03	204.97	1.00
6	12 942	0 0071	1 3177	0 0215	51	0.00	162.62	101 17	1.44
Ŭ	.I/N	.IRF	RMSE	0.0210 F	52	0.01	154 29	173.22	1.00
	1.8167	0.427	9.8855	0.00026	53	0.00	145.96	157.48	1.07
NO	雨量	実績流量	計算流量	計算浸透	54	0.05	137.63	143.68	0.98
_	(mm/h)	(m3/s)	(m3/s)	(mm/h)	55	0.00	129.30	131.55	0.89
MAXstep	` 30	` 38	` 38	` <u></u>	56	0.00	109.65	120.80	0.82
MAX	75.39	613.78	584.85	3.97	57	0.26	100.67	111.41	0.76
1	0.00	0.32	0.32	0.00	58	0.00	89.86	103.11	0.70
2	0.06	0.32	0.32	0.00	59	0.00	83.00	95.60	0.65
3	0.30	0.35	0.33	0.00	60	0.01	76.82	88.83	0.60
4	0.26	0.35	0.36	0.00	61	0.00	/1.65	82.71	0.56
5	0.05	0.35	0.38	0.00	62	0.05	69.94	77.18	0.52
0 7	0.02	0.30	0.43	0.00	03 64	0.00	00.24 66.52	72.10 67.61	0.49
8	0.10 1 7/	0.39	0.49	0.00	65	0.00	6/ 82	63.44	0.40
q	3.49	0.33	0.00	0.00	66	0.00	63.11	59.62	0.40
10	2 09	0.53	1.53	0.01	67	0.00	61 41	56 13	0.38
11	0.37	0.57	2.23	0.02	68	0.00	59.70	52.92	0.36
12	0.26	0.66	2.88	0.02	69	0.00	57.99	49.96	0.34
13	0.51	0.90	3.46	0.02	70	0.00	56.29	47.24	0.32
14	0.42	1.11	3.97	0.03	71	0.00	54.58	44.72	0.30
15	0.00	1.29	4.38	0.03	72	0.00	52.87	42.39	0.29
16	0.38	1.35	4.69	0.03	73	0.00	51.17	40.23	0.27
17	0.11	1.42	4.94	0.03	74	0.00	49.46	38.23	0.26
18	0.00	1.42	5.11	0.03	/5 70	0.00	47.75	36.37	0.25
19	0.00	1.42	5.19	0.04	70 77	0.00	40.04	34.03	0.24
20	0.03	1.42	5.22	0.04	78	0.00	44.34	33.01	0.22
21	0.20	1.00	5.20	0.04	70	0.00	40.92	30.08	0.21
23	0.13	1.23	5.25	0.04	80	0.00	39.22	28.75	0.20
24	18.70	1.83	7.66	0.05	81	0.00	37.51	27.51	0.19
25	5.28	5.85	13.35	0.09	82	0.00	35.80	26.34	0.18
26	5.70	15.26	20.31	0.14	83	0.00	34.09	25.24	0.17
27	2.30	21.62	27.35	0.19	84	0.00	32.39	24.20	0.16
28	1.55	27.12	33.07	0.22	85	0.00	30.68	23.23	0.16
29	25.53	39.21	45.55	0.31	86	0.00	28.97	22.31	0.15
30	75.39	104.40	98.33	0.67	87	0.00	21.21 25.56	21.44	0.15
32	32.90 8.21	200.09	203.00	2.06	00 80	0.00	20.00	20.02	0.14
33	9.21	393 27	367 18	2.00	90	0.00	23.05	19.04	0.13
34	27 10	434.39	421 60	2.40	91	0.00	20.44	18 41	0.13
35	12.75	483.73	466.96	3.17	92	0.00	18.73	17.74	0.12
36	14.35	524.07	492.46	3.34	93	0.00	17.02	17.12	0.12
37	39.60	568.93	538.40	3.65	94	0.00	15.32	16.52	0.11
38	12.58	613.78	584.85	3.97	95	0.00	13.61	15.95	0.11
39	1.28	579.08	584.83	3.97	96	0.00	13.61	15.41	0.10
40	0.09	544.37	547.90	3.72	97	0.00	13.61	14.89	0.10
41	4.87	509.67	501.41	3.40	98	0.00	13.61	14.40	0.10
42	8.65 E 40	4/4.96	463.21	3.14	400	0.00	14.30	13.94	0.09
43 11	0.49 1 QE	440.20 105 55	401.49 202 20	2.93	100	0.00	11.4Z	13.49	0.09
44 45	1.00 0.32	370.85	362 15	2.70	101	0.00	10.42	12.00	0.09
46	0.02	336 14	325.78	2.40	102	0.10	10.09	12.00	0.09
47	0.32	301.44	291.98	1.98	104	0.16	9.80	12.08	0.08
48	0.06	266.73	261.66	1.78	105	0.00	9.61	11.80	0.08

Į, į	員失項を言	含む貯留関	数法による	
NO	雨量	実績流量	計算流量	計算浸透
106	0.00	9.42	11.51	0.08
107	0.00	9.04	11.21	0.08
108	0.00	9.04	10.91	0.07
109	0.00	8.67	10.61	0.07
110	0.00	8.49	10.32	0.07
111	0.00	8.13	10.04	0.07
112	0.00	7.96	9.76	0.07
113	0.00	7.78	9.50	0.06
114	0.00	7.61	9.24	0.06
115	0.00	7.44	8.99	0.06
116	0.00	7.27	8.75	0.06
117	0.00	7.27	8.52	0.06
118	0.00	7.11	8.30	0.06
119	0.00	6.94	8.08	0.05
120	0.00	6.78	7.88	0.05
121	0.00	6.62	7.68	0.05
122	0.00	6.46	7.49	0.05
123	0.00	6.46	7.30	0.05
124	0.00	6.46	7.12	0.05
120	0.00	0.40	6.95	0.05
120	0.00	0.30 6.15	0.70	0.05
127	0.00	0.10	0.02	0.04
120	0.00	0.00 E 95	0.40	0.04
129	0.00	0.00 5 95	6.31	0.04
130	0.00	5.05	6.03	0.04
132	0.00	5.70	5.80	0.04
132	0.00	5.70	5.05	0.04
134	0.00	5 55	5.63	0.04
135	0.00	5.26	5.50	0.04
136	0.00	5.26	5.38	0.04
137	0.00	5.12	5.27	0.04
138	0.00	5.12	5.15	0.03
139	0.00	4,98	5.04	0.03
140	0.00	4.84	4.94	0.03

表 4.3(2) 留萌川幌糠再現計算結果 損失項を含む貯留関数法による

5.1 地下水流出を含む貯留関数法(2段タンク型貯留関数モデル:単流域解析) 5.1 手法の特徴

浸透性が高く、損失及び遅れて流出してくる成分が大きい流域において、1段タンク型貯 留関数法では十分に再現できない事例が見られる。このような問題を解決するためには、 地下水流出成分を表現できるモデルが必要となってくる。本手法は、1段目タンクで表面・ 中間流出成分を表わし、2段目タンクで地下水流出成分を表現するもので、地下水流出成 分の分離に数学的フィルター分離法を用いることで、地下水流出成分を表わす未知定数を 決定し、解析にかかる負担を増やさない特徴を持っている。

5.2 流出モデル

図 5.1 は地下水流出を含む貯留関数法を表現している。

<u>上段タンク</u>

$$s_{1} = k_{11}q_{1}^{p_{1}} + k_{12}\frac{dq_{1}^{p_{2}}}{dt}$$

$$\frac{ds_{1}}{dt} = r - q_{1} - b$$

$$b = (c_{3} - 1)q_{1}$$
(5)

<u>下段タンク</u>

$$s_{2} = k_{21}q_{2} + k_{22}\frac{dq_{2}}{dt}$$

$$\frac{ds_{2}}{dt} = b - q_{2}$$
(6)

$$q = q_1 + q_2 \tag{7}$$

$$p_{1} = 0.6 p_{2} = 0.4648 k_{11} = c_{1}A^{0.24} k_{12} = c_{2}k_{11}^{2}\overline{r}^{-0.2648}$$
(8)

$$k_{21} = d_1 k_{22}
k_{22} = (c_3 - 1) / d_0
d_0 = (\delta / T_c)^2
d_1 = \delta^2 / T_c$$
(9)

図 5.1 地下水流出を含む貯留関数モデル

ここに、 s_1 :1段目タンク貯留高(mm)、r:観測雨量(mm/h)、 q_1 :表面・中間流出高(mm/h)、 b:1段目タンクから2段目タンクへの浸透供給量(mm/h)、 k_{11} , k_{12} , k_{21} , k_{22} :貯留係数、 p_1 , p_2 :貯留指数、 s_2 :2段目タンク貯留高(mm)、 q_2 :地下水流出高(mm/h)、q:全流出 高(mm/h)、A:流域面積(km²)、: \overline{r} 平均雨量強度(mm/h)、 c_1 , c_2 , c_3 :未知定数、 T_c :地下水 流出成分の分離時定数、 δ :減衰係数(ここでは δ =2.1とした)

(5)~(9)式を用いた流出量の再現計算方法についての詳細は文献4)を参照されたい。

5.3 未知定数 c₁, c₂, c₃の最適化法

上段タンクの未知定数 c_1 , c_2 , c_3 の最適化は、観測流量から地下水流出量を分離した表面・中間流出量 q_{1oi} とその計算値 q_{1ci} の誤差を表わす目的関数J/Nを最小とするようニュートン法を適用して行う。最適化計算の詳細は文献 4)を参照されたい。

$$J / N = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{q_{1oi} - q_{1ci}}{\sqrt{q_{1oi}}} \right\}$$

ここに、 q_{1oi} :分離後表面・中間流出量(m³/s)、 q_{1ci} :上段タンクからの計算流出量(m³/s)、 N:データ数

5.4 地下水流出成分の分離時定数T_aの設定

 T_c はハイドログラフの低減部曲線を片対数紙にプロットしたとき、勾配がもっとも緩やかな直線部の傾きを λ とすると

$$T_{c} = 1/\lambda = \frac{t_{2} - t_{1}}{\ell_{n}q_{1} - \ell_{n}q_{2}}$$

で決定される。図 3.3 の点(ウ)と点(エ)を用いて T_c を算出すると図 5.3 に示すように T_c = 21.7 が得られる。これは 4.4 で設定した λ = 0.0462 になっている。

 λ のところで述べたように T_c も流域特性を表すと考えるべきであり、1 洪水のデータだけ で T_c 値を決定してしまうと、流域特性を見誤る可能性が高く、洪水再現性も向上しないこ とが多い。すなわち、 T_c は複数洪水データにより λ を設定し、その逆数を与えるべきであ る。表 5.1 は文献 4)に示される北海道内の一級水系(標津川は二級水系)における T_c の平 均値である。流量資料が乏しい場合は、これらの値を参考にするとよい。

なお、本報告に添付の流出計算システムでは、 $T_1 \ge T_2$ の2点を直線で結ぶのではなく、 T_1 , T_2 間の全データに最小自乗法を適用して得られる直線の勾配の逆数を T_c としている。

図 5.2 定数 (c₁, c₂, c₃) 解析の手順

表 5.1 水系毎のモデル定数統計量(2段タンク型モデル)

洪		洪	С	1	С	<i>c</i> ₂		<i>c</i> ₃		分離時定数 (T_c)	
水系名	3	水	平均	標準偏差	平均	標準偏差	平均	標準偏差	平均	標準偏差	
		¥Χ	(µ)	()	(µ)	()	(µ)	()	(µ)	()	
天塩川		51	8.091	4.044	0.331	0.213	2.331	0.788	55.5	16.16	
渚 滑 川		42	8.092	2.906	0.378	0.216	2.115	0.808	65.9	20.99	
湧 別 川		32	7.463	1.951	0.384	0.181	2.139	0.465	75.8	19.93	
常呂川		34	9.698	3.340	0.304	0.212	2.744	0.732	60.0	16.63	
網走川		20	12.883	3.815	0.197	0.104	4.036	1.415	72.7	12.96	
留萌川		39	8.666	2.099	0.337	0.257	1.787	0.558	76.7	35.65	
石狩川		72	8.081	3.444	0.272	0.207	2.453	0.850	52.5	25.98	
尻 別 川		69	9.225	2.782	0.242	0.140	2.751	0.840	62.9	15.47	
後志利別川		65	5.906	1.689	0.403	0.263	1.866	0.528	55.6	18.01	
鵡り		34	7.215	1.847	0.385	0.218	2.561	1.220	45.3	11.55	
沙 流 川		60	8.035	2.279	0.264	0.176	1.898	0.586	69.1	22.86	
釧 路 川		42	14.692	4.870	0.165	0.102	4.434	1.375	62.6	19.04	
十勝川		86	9.405	2.942	0.297	0.259	2.487	0.988	60.8	16.13	
標津川		4	12.393	0.999	0.265	0.026	3.942	0.928	95.4	39.08	
全水系		650	8.803	3.618	0.304	0.217	2.499	1.097	61.7	22.01	

5.5 計算例

留萌川幌糠の昭和 63 年 8 月洪水データに適用した計算例を示す。 ここでは、 T_c = 46.5 (= 1/ λ = 1/0.0215) とした。

試算回数	9 回	J / N	87.2968	$E_{_{w}}$	9.1174
<i>C</i> ₁	9.1051	$J_{\scriptscriptstyle RE}$	2.2798	E_{v}	-0.2895
<i>C</i> ₂	0.3984	RMSE	43.8274	E_p	-0.0474
<i>C</i> ₃	2.1187	E	0.0051	\mathcal{Q}_{cp}	642.87

表 5.2 地下水流出を含む貯留関数法の定数解析結果

 Q_{cp} :計算ピーク流量(m³/s)

表	5.3(1)) 留萌川幌糠再現計算結果	
বহ	0.3(T) 田明川恍惚丹坑前异构未	

	<u>地卜水流</u>	出を含む貯	留関数法に	こよる		
J/N-Min	1988	8	24	16		
NO	C1	C2	C3	Тс		
9	9.1051	0.3984	2.1187	46.5	2.1	
	J/N	Jre	RMSE	E		
	87.2968	2.2798	43.8274	0.0051		
NO	雨量	実績流量	計算流量	分離地下	計算地下	計算浸透
	(mm/h)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(mm/h)
MAXstep	30	38	39	55	63	` 39
MAX	75.39	613.78	642.87	125.88	118.77	14.88
1	0.00	0.32	0.32	0.00	0.00	0.01
2	0.06	0.32	0.32	0.00	0.00	0.01
3	0.00	0.35	0.33	0.00	0.00	0.01
4	0.00	0.00	0.00	0.00	0.00	0.01
5	0.20	0.00	0.36	0.00	0.00	0.01
6	0.62	0.00	0.00	0.01	0.01	0.01
	0.02	0.00	0.00	0.01	0.01	0.01
, s	1 7/	0.00	0.42	0.01	0.01	0.01
	3/0	0.00	0.45	0.02	0.02	0.01
10	2.49	0.42	0.00	0.02	0.02	0.01
10	∠.U9 ∩ 27	0.00	1 20	0.03	0.03	0.02
10	0.37	0.07	1.00	0.03	0.03	0.03
12	0.20	0.00	1.00	0.04	0.04	0.04
1.0	0.31	0.90	2.52	0.04	0.03	0.03
14	0.42	1.11	2.00	0.05	0.07	0.07
15	0.00	1.29	3.00	0.00	0.00	0.08
10	0.30	1.55	3.90	0.07	0.11	0.09
11/	0.11	1.42	4.42	0.00	0.14	0.10
10	0.00	1.42	4.09	0.10	0.17	0.11
19	0.00	1.42	5.51	0.11	0.21	0.12
20	0.03	1.42	5.07 6.01	0.13	0.23	0.13
21	0.20	1.00	0.01	0.14	0.30	0.14
22	0.00	1.29	0.30 6.55	0.10	0.30	0.14
20	18 70	1.23	0.00 8 1 1	0.10	0.42	0.13
25	5 28	5.85	11.61	0.20	0.43	0.10
20	5 70	15.00	16.31	0.22	0.07	0.20
20	2 30	21.62	21.03	0.20	0.00	0.00
28	1 55	27.02	27.81	0.01	0.77	0.40
20	25.53	39.21	37.64	0.41	1.09	0.84
30	75 39	104 40	68 35	0.00	1 32	1 49
31	32.96	250.09	133.26	1 23	1.62	2.96
32	8 21	348.92	216 78	2 11	2 22	4 93
33	9.95	393.27	300.75	3.59	3.14	6.92
34	27.10	434.39	385.94	5.69	4.54	8.91
35	12.75	483.73	466.09	8.44	6.54	10.82
36	14.35	524.07	526.78	11.87	9.24	12.25
37	39.60	568.93	584.56	15.99	12.67	13.52
38	12.58	613.78	633.29	20.82	16.88	14.66
39	1.28	579.08	642.87	26.35	21.87	14.88
40	0.09	544.37	612.16	32.44	27.57	14.09
41	4.87	509.67	557.62	38.97	33.85	12.68
42	8.65	474.96	497.07	45.83	40.52	11.07
43	5.49	440.26	437.90	52.89	47.42	9.49
44	1.85	405.55	380.86	60.07	54.37	7.95
45	0.32	370.85	327.43	67.27	61.24	6.50
46	0.05	336.14	279.91	74.40	67.90	5.19
47	0.32	301.44	239.90	81.39	74.26	4.06
48	0.06	266.73	207.60	88.17	80.25	3.13
49	0.26	232.03	182.39	94.68	85.80	2.37
表	5.3(2)	留萌川幌糠再現計算結果				
---	--------	-------------				

NO	<u>地ト水流は</u> 雨昌	<u>出を営む貯</u> 宝痣法를	<u> 留 関 数 太 に 計 質 法 星</u>	<u>しよる</u> - 公離地下	計算書人	計管這还
NO	的里 (mm/h)	天領///里 (m3/s)	司 异///里 (m3/s)	刀 商型-凹 ト (m3/s)	리 <u></u> 무 · 巴 下 (m ዓ / s)	司 <i>异/</i> 反//○ (mm/h)
MAXstep	30	38	(1107.3)	55	63	39
MAX	75.39	613.78	642.87	125.88	118.77	14.88
50	0.06	197.32	163.28	100.87	90.90	1.78
51	0.01	162.62	149.13	106.68	95.51	1.32
52	0.01	154.29	138.90	112.08	99.65	0.97
53	0.00	145.96	131.71	117.07	103.33	0.70
54	0.05	137.63	126.80	121.67	106.54	0.50
55	0.00	129.30	123.55	125.88	109.32	0.35
56	0.00	109.65	121.49	109.65	111.69	0.24
57	0.26	100.67	120.27	100.67	113.67	0.16
58	0.00	89.86	119.61	89.86	115.28	0.11
59	0.00	83.00	119.27	83.00	116.56	0.07
60	0.01	76.82	119.12	76.82	117.52	0.04
61	0.00	/1.65	119.05	/1.65	118.19	0.02
62	0.05	69.94	119.00	69.94	118.61	0.01
63	0.00	68.24	118.90	68.24	118.77	0.00
64	0.00	00.33 64.92	110./3	64.92	110.72	0.00
60	0.00	04.0Z	110.40	04.0Z	110.40	0.00
67	0.00	61 /1	117.03	61 / 1	117.03	0.00
68	0.00	59.70	116.67	59 70	116.67	0.00
69	0.00	57 99	115.78	57 99	115.78	0.00
70	0.00	56 29	114 77	56 29	114 77	0.00
71	0.00	54.58	113.65	54.58	113.65	0.00
72	0.00	52.87	112.44	52.87	112.44	0.00
73	0.00	51.17	111.14	51.17	111.14	0.00
74	0.00	49.46	109.77	49.46	109.77	0.00
75	0.00	47.75	108.32	47.75	108.32	0.00
76	0.00	46.04	106.82	46.04	106.82	0.00
77	0.00	44.34	105.27	44.34	105.27	0.00
78	0.00	42.63	103.68	42.63	103.68	0.00
79	0.00	40.92	102.05	40.92	102.05	0.00
80	0.00	39.22	100.39	39.22	100.39	0.00
81	0.00	37.51	98.71	37.51	98.71	0.00
82	0.00	35.80	97.01	35.80	97.01	0.00
03	0.00	34.09	90.29	34.09	90.29	0.00
04 85	0.00	30.68	93.00	32.39 30.68	93.00	0.00
86	0.00	28.00	91.03 91.03	28.00	91.03 91.03	0.00
87	0.00	20.37	88 35	20.37	88 35	0.00
88	0.00	25.56	86.62	25.56	86.62	0.00
89	0.00	23.85	84.89	23.85	84.89	0.00
90	0.00	22.15	83.18	22.15	83.18	0.00
91	0.00	20.44	81.47	20.44	81.47	0.00
92	0.00	18.73	79.77	18.73	79.77	0.00
93	0.00	17.02	78.09	17.02	78.09	0.00
94	0.00	15.32	76.43	15.32	76.43	0.00
95	0.00	13.61	74.78	13.61	74.78	0.00
96	0.00	13.61	73.16	13.61	73.16	0.00
97	0.00	13.61	71.55	13.61	71.55	0.00
98	0.00	13.61	69.96	13.61	69.96	0.00
99	0.00	14.30	68.40	14.30	68.40	0.00
100	0.00	11.42	66.86	11.42	66.86	0.00
101	0.00	11.42	65.34	11.42	65.34	0.00
102	0.16	10.39	ບ3.84 ຄວ.ວ . 7	10.39	ບ3.84 ຄວ.ວ . 7	0.00
103	0.12	0.00	02.31 60.02	0.00	02.31 60.02	0.00
104	0.00	9.60	59.51	9.60	59.51	0.00

地下水流出を含む貯留関数法による								
NO	雨量	実績流量	計算流量	分離地下	計算地下	計算浸透		
	(mm/h)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(mm/h)		
MAXstep	30	38	39	55	63	39		
MAX	75.39	613.78	642.87	125.88	118.77	14.88		
106	0.00	9.42	58.11	9.42	58.11	0.00		
107	0.00	9.04	56.74	9.04	56.74	0.00		
108	0.00	9.04	55.39	9.04	55.39	0.00		
109	0.00	8.67	54.07	8.67	54.07	0.00		
110	0.00	8.49	52.78	8.49	52.78	0.00		
111	0.00	8.13	51.51	8.13	51.51	0.00		
112	0.00	7.96	50.26	7.96	50.26	0.00		
113	0.00	7.78	49.05	7.78	49.05	0.00		
114	0.00	7.61	47.85	7.61	47.85	0.00		
115	0.00	7.44	46.68	7.44	46.68	0.00		
116	0.00	7.27	45.54	7.27	45.54	0.00		
117	0.00	7.27	44.42	7.27	44.42	0.00		
118	0.00	7.11	43.32	7.11	43.32	0.00		
119	0.00	6.94	42.25	6.94	42.25	0.00		
120	0.00	6.78	41.20	6.78	41.20	0.00		
121	0.00	6.62	40.18	6.62	40.18	0.00		
122	0.00	6.46	39.17	6.46	39.17	0.00		
123	0.00	6.46	38.19	6.46	38.19	0.00		
124	0.00	6.46	37.24	6.46	37.24	0.00		
125	0.00	6.46	36.30	6.46	36.30	0.00		
126	0.00	6.30	35.39	6.30	35.39	0.00		
127	0.00	6.15	34.49	6.15	34.49	0.00		
128	0.00	6.00	33.62	6.00	33.62	0.00		
129	0.00	5.85	32.77	5.85	32.77	0.00		
130	0.00	5.85	31.94	5.85	31.94	0.00		
131	0.00	5.70	31.12	5.70	31.12	0.00		
132	0.00	5.70	30.33	5.70	30.33	0.00		
133	0.00	5.55	29.56	5.55	29.56	0.00		
134	0.00	5.55	28.80	5.55	28.80	0.00		
135	0.00	5.26	28.07	5.26	28.07	0.00		
136	0.00	5.26	27.35	5.26	27.35	0.00		
137	0.00	5.12	26.65	5.12	26.65	0.00		
138	0.00	5.12	25.96	5.12	25.96	0.00		
139	0.00	4.98	25.29	4.98	25.29	0.00		
140	0.00	4.84	24.64	4.84	24.64	0.00		

表	5.3(3)	留萌川幌糠再現計算結果

6. 複合流域の洪水流出計算法(1段タンク型貯留関数モデル)

6.1 手法の特徴

本手法は、4節で説明した損失項を含む貯留関数法において、流域分割・河道追跡計算を 行うモデルであり、その特徴は4.1 に述べたとおりである。また、計算手法は文献3)に詳 しく示されている。本書では流域・河道ネットワークの識別方法を改良しており、どのよ うなネットワークにも対応できるようになっている。

6.2 流出モデル

本システムでは、図 6.1 のように流域や河道の複雑なネットワークを下流に伝達させる手 法を採用している。

図 6.1 流域・河道ネットワークの例(留萌川幌糠)

(1)流域流出モデル

複合流域の洪水流出計算法は、分割流域における流出モデルとして図 6.2 に示すタンクを 考え、以下に示す貯留関数法を適用する。(前述の 4 と同じ)

ここに、s:貯留高(mm)、r:観測雨量(mm/h)、q:観測流出高(mm/h)、b:損失高(mm/h)、 q_b :地下水流出高(mm/h)、 q_{in} :初期流出高(mm/h)、 k_1 , k_2 :貯留係数、 p_1 , p_2 :貯留 指数、 λ :減衰係数、 c_1 , c_2 , c_3 :未知定数、r:洪水期間の平均雨量強度(mm/h)、A: 流域面積(km²)

(2)河道追跡モデル

河道モデルは、横流入量がない場合の Kinematic Wave 法を貯留関数法に集中化した次式 を適用する。 _x

(11)式を解くとき、計算時間の短縮化と数値計算の精度向上を図るため、流出量算出と感度係数算出を無次元領域で行うものとし、河道上流端の流入ハイドログラフを二等辺三角形に近似したときの K_3 , K_4 , p_3 , p_4 を(12)式のm だけで表わした近似式が作られている。 無次元領域での河道流出量を有次元化するために(12)式の α と河道延長Lを使用する。これらの詳細は文献 3)を参照されたい。

ここに、t:時間(*sec*)、 q_0 :河道上流端流量(m³/s)、 q_s :河道流量(m³/s)、 a_s :横断面 積(m²)、L:河道長(m)、 α,m :河道流定数、 s_s :河道貯留量(m³)、 K_3 , K_4 :河道の無 次元貯留係数、 p_3 , p_4 :河道の貯留指数

6.3 未知定数 c₁, c₂, c₃の最適化法

モデル定数 ($c_1 \sim c_3$)の最適化は、観測流量と計算流量の差を表わす目的関数 J/N を最小とするように行われる。最適化方法についての詳細は文献 3)を参照されたい。

$$J / N = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{q_{oi} - q_{ci}}{\sqrt{q_{oi}}} \right\}^{2}$$

ここに、 q_{oi} :観測流量(m³/s) q_{ci} :計算流量(m³/s) N:データ数

図 6.4 定数 (c₁, c₂, c₃) 解析の手順

- 6.4 流域・河道ネットワークの識別方法
- (1)ネットワークの構成要素と識別番号の付け方
 - ネットワークは以下の4つの要素を組み合わせて構成されるものとする。
 - 1.流 域:雨量を与えて流量を計算する
 - 2.上流端: 強制的に流量を与える
 - 3.河 道:河道追跡計算を行う
 - 4.合流点:流域,河道,本川・支川などの流量を合計する場所で直下流が河道でない もの。(直下流が河道の場合は河道への流入量計算と合流点としての合計 計算とが重複することになるので、河道への流入量計算の方で済ませるものとしてある)

構成要素の判別は識別番号で行い、識別番号は以下のように与える。

表	6.1		識別	」番号	の付	け	方			
流	域	: 1	11	21	31	•	•	•	•	
上流	端	: 2	12	22	32	•	•	•	•	
河	道	: 3	13	23	33	•	•	•	•	
合流	点	: 4	14	24	34	•	•	•	•	
		本川	一次支川	二次支川	三次支川				•	

すなわち、識別番号の1の位で流域・河道などを判別し、10の位で本・支川の別及び支 川の場合の次数を判別する。

ネットワーク構成要素を配置するにあたって、本システムでは合流は2地点の合流までとしている。3地点以上の合流の場合は、合流点を増やして2地点ずつの合流になるよう配置し直す。すなわち、下図の左側のような設定はできない。右側のようにする。

図 6.5 流域の配置方法

(2)識別データの例(1)

本システムでは流域や河道の接続状態を識別番号と地点番号によって表現することにしている。

ここで、留萌川幌糠を例に識別番号,地点番号及び識別データを説明する。

1)ネットワークの構成要素(流域,上流端,河道,合流点)にはそれぞれ入力地点と出力 地点を設定している。

右図で説明する。 ア.流域では雨を入力(: :入力地点) क्त して流域流出計算を行って流量を 流量(流量(流量 出力(:出力地点)する。 流量 イ.上流端では流量を入力して、その 流量を出力する形をとる。すなわ 流域 上流端 河 道 合流点 ち、入力地点と出力地点は同じ地 図 6.6 入·出力地点 点(●)である。

ウ.河道は、流域からの出力や上流端の出力又はそれらを合計した値が入力()となり、 河道追跡計算を行って流量を出力()する。

- エ. 合流点は、流域からの出力,上流端の出力,河道の出力等の合計が入力であり、その まま出力となる。入力地点と出力地点は同じ場所である。
- 2)これらの入・出力地点に上流から順に連続した番号を付けたのが地点番号である。 地点番号付けのルールは次の2点である。 ・入力点と出力点は連続した番号とし、 入力点の方を小さい番号とする。 (入力点と出力点が同じ場合には、番 号はひとつだけである) ・番号は必ず下流に向かって大きくなる ように付ける。

留萌川幌糠を例にとり、具体的に番号を付け、 識別データを作成していくと以下のようにな る。

まず、流域・河道ネットワーク図を描き(図 6.7)、流域,河道,合流点に上流から地点番 号を付ける。右図の印が「地点」である。 次に、表 6.2 を作り、計算地点を上流から順に並べる。

図 6.7 留萌川幌糠の 流域・河道ネットワーク

識別子を表 6.1 の規則にしたがって設定し、入力地点番号を指定する。

入力地点の流量をどの地点のデータを使って求めるかを指定する。

例えば、計算順序の4番目で説明すると、その入力地点6の流量は地点3と地点5の合計であるから、加える地点数が2(ヵ所)でその地点番号は3と5であることを指示する。

計算 順序	識別子		入力地 点番号	加える 地点数	加える 地点番号 1	加える 地点番号 2	備考
1	1 ((1 流域)	1	0	0	0	
2	3 ((A 河道)	2	1	2	0	
3	1 ((2 流域)	4	0	0	0	
4	4 ((合流点)	6	2	3	5	
5	11 ((3 流域)	7	0	0	0	一次支川
6	13 ((B 河道)	8	1	8	0	"
7	11 ((4 流域)	10	0	0	0	"
8	14 ((合流点)	12	2	9	11	"
9	3 ((C河道)	13	2	6	12	
10	1 ((5 流域)	15	0	0	0	
11	4 ((合流点)	17	2	14	16	
12	1 ((6 流域)	18	0	0	0	
13	4 ((合流点)	20	2	17	19	
14	11 ((7 流域)	21	0	0	0	一次支川
15	13 ((D 河道)	22	1	22	0	"
16	11 ((8	24	0	0	0	"
17	14 ((合流点)	26	2	23	25	"
18	4 ((合流点)	27	2	20	26	幌糠

表 6.2 留萌川幌糠のネットワーク識別データ

(3)識別データの例(2)

本川と支川の区別は、同じモデルでも計算順序のつけ方によって変わるが、各地点の計算 値そのものには全く影響しない。例えば、下図(A),(B)は全く同じモデルである。計算 順序を変えたことによって、(A)では本川しかないことになり、(B)では本川と一次支川 が存在していることになるが、計算値は全く同じになる。

図 6.8 計算順序の付け方で変わる本川・支川の区別

モデル	計算 順序	識	別子	入力地点 番号	加える 地点数	加える 地点番号 1	加える 地点番号 2
	1	1	流域	1	0	0	0
^	2	3		2	1	2	0
A	3	1	流域	4	0	0	0
	4	4	合流点	6	2	3	5
	1	1	流域	1	0	0	0
P	2	11	流域	3	0	0	0
Б	3	13	河道	4	1	4	0
	4	4	合流点	6	2	2	5

表 6.3 図 6.8 のモデルに対応する識別データ

6.5 計算例

留萌川幌糠の昭和 63 年 8 月洪水データに適用した計算例を示す。雨量は表 2.2 の分割流 域の値とし、河道データは表 2.1 を用いた。また、 λ = 0.0215 とした。

試算回数	6 回	<i>C</i> ₃	1.3203	RMSE	10.6296	E_{v}	0.0204		
<i>C</i> ₁	18.8549	J / N	1.9150	E	0.0003	E_{p}	0.057		

0.4152

 E_{w}

0.8601

 Q_{cp}

578.75

表 6.4 複合流域の 1 段タンク型貯留関数法における定数解析結果

 Q_{cp} :計算ピーク流量(m³/s)

 J_{RE}

0.0829

 c_2

<u>複合流域の1段タンク型貯留関数法による</u> NO 雨重 美額流重 J/N-Min 1988 8 24 16 49 0.26 232.03	計昇沇重
J/N-MIN 1988 8 24 161 49 0.26 232.03	000.00
	236.09
NO CI CZ C3 50 0.06 197.32	212.89
6 18.8549 0.0829 1.3203 0.0215 51 0.01 162.62	192.52
J/N JRE RMSE E 52 0.01 154.29	174.59
	158.82
NO 肉童 実績流童 計算流量 54 0.05 13/.63	144.95
(mm/hr) (m3/s) (m3/s) 55 0.00 129.30	132.74
MAXstep 30 38 39 56 0.00 109.65	121.93
MAX 75.39 613.78 578.75 57 0.26 100.67	112.36
1 0.00 0.32 0.32 58 0.00 89.86	103.93
2 0.06 0.32 0.32 59 0.00 83.00	96.39
3 0.30 0.35 0.33 60 0.01 76.82	89.58
4 0.26 0.35 0.34 61 0.00 71.65	83.43
5 0.05 0.35 0.36 62 0.05 69.94	77.85
6 0.62 0.35 0.38 63 0.00 68.24	72.81
7 0.18 0.39 0.42 64 0.00 66.53	68.22
8 1.74 0.39 0.51 65 0.00 64.82	64.01
9 3.49 0.42 0.74 66 0.00 63.11	60.15
10 2.09 0.53 1.18 67 0.00 61.41	56.61
11 0.37 0.57 1.78 68 0.00 59.70	53.36
12 0.26 0.66 2.52 69 0.00 57.99	50.37
13 0.51 0.90 3.35 70 0.00 56.29	47.61
14 0.42 1.11 4.01 71 0.00 54.58	45.06
15 0.00 1.29 4.39 72 0.00 52.87	42.70
16 0.38 1.35 4.64 73 0.00 51.17	40.52
17 0.11 1.42 4.89 74 0.00 49.46	38.49
18 0.00 1.42 5.15 75 0.00 47.75	36.60
19 0.00 1.42 5.39 76 0.00 46.04	34.84
20 0.03 1.42 5.58 77 0.00 44.34	33.20
21 0.26 1.35 5.72 78 0.00 42.63	31.67
22 0.00 1.29 5.80 79 0.00 40.92	30.24
23 0.13 1.23 5.86 80 0.00 39.22	28.90
24 18.70 1.83 7.49 81 0.00 37.51	27.64
25 5.28 5.85 12.46 82 0.00 35.80	26.46
26 5.70 15.26 20.46 83 0.00 34.09	25.34
27 2.30 21.62 28.78 84 0.00 32.39	24.30
28 1.55 27.12 34.57 85 0.00 30.68	23.31
29 25.53 39.21 45.13 86 0.00 28.97	22.38
30 75.39 104.40 87.92 87 0.00 27.27	21.51
31 32.96 250.09 193.62 88 0.00 25.56	20.68
32 8.21 348.92 302.95 89 0.00 23.85	19.89
33 9.95 393.27 373.83 90 0.00 22.15	19.15
34 27.10 434.39 429.27 91 0.00 20.44	18.44
35 12.75 483.73 475.83 92 0.00 18.73	17.77
	17.14
37 39.60 568.93 532.83 94 0.00 15.32	16.54
38 12.58 613.78 575.89 95 0.00 13.61	15.97
	15.42
	14.90
41 4.07 DU3.07 437.14 98 U.UU 13.01	14.41
42 0.00 474.90 400.02 99 0.00 14.30	13.94
40 0.40 440.20 424.04 100 0.00 11.42	10.49
44 1.00 400.00 390.02 101 0.00 11.42 /5 0.32 370.85 350.50 402 0.46 40.20	10.00
46 0.05 33614 324.00 102 0.12 0.10 10.39	12.00 10.07
47 0.32 301.44 202.23 10.0 0.12 10.00 Δ7 0.32 301.44 202.23	12.37
48 0.06 266.73 262.53 105 0.00 9.61	11.82

	表 6.5(2)	出明	川幌糠冉均	見計算結果	
		複合流域	<u>の1段タンク</u>	型貯留関	数法に
	NO	雨量	実績流量	計算流量	
	106	0.00	9.42	11.53	
	107	0.00	9.04	11.22	
	108	0.00	9.04	10.91	
	109	0.00	8.67	10.60	
	110	0.00	8.49	10.31	
	111	0.00	8.13	10.02	
	112	0.00	7.96	9.74	
	113	0.00	7.78	9.47	
	114	0.00	7.61	9.21	
	115	0.00	7.44	8.96	
	116	0.00	7.27	8.72	
	117	0.00	1.21	8.48	
	118	0.00	7.11	0.20 0.05	
	119	0.00	0.94 6 70	0.00 7.04	
	120	0.00	0.70	7.04	
	121	0.00	6.02	7.04	
	122	0.00	6.46	7.44	
	123	0.00	6.46	7.20	
	124	0.00	6.46	6.00	
	120	0.00	6 30	674	
	120	0.00	6 1 5	6.58	
	128	0.00	6.00	6.42	
	129	0.00	5.85	6.27	
	130	0.00	5.85	6.12	
	131	0.00	5.70	5.98	
	132	0.00	5.70	5.84	
	133	0.00	5.55	5.71	
	134	0.00	5.55	5.58	
	135	0.00	5.26	5.46	
	136	0.00	5.26	5.34	
	137	0.00	5.12	5.22	
ļ	138	0.00	5.12	5.11	
	139	0.00	4.98	5.00	
	140	0.00	4.84	4.89	

主 6 5 (2) 与川根梅市田計管社田 よる

7.流出計算システムの使用法 目 次

7.1	単流域解析システム	46
1] 流出計算システムの起動	46
2] 計算手法の選択	46
3] 入力・編集・印刷の選択	46
4] 新規データセットの入力・計算	47
5] 既存データファイルの選択	47
6] 既存データセットの編集	47
7	データの入力	48

有効雨量を用いた貯留関数法

8] 直接流出成分の分離	50
9] 直接流出成分をグラフ上で設定する	50
10	直接流出成分の分離を時間を指定して設定する	51
11] 設定条件の保存	51
12	再現計算を実行する	52
13	再現結果図の表示	53
14	計算結果一覧表の表示 5	54
15	結果の保存	54
16	データセットの印刷	55
17	システム終了	56

* * * 損失項を含む貯留関数法 * * *

18	「損失項を含む貯留関数法 」	57
19	再現計算を実行する	58
20	再現結果の表示	58
21	再現結果図の表示	59
22	データセットの印刷	59

* * * 地下水流出を含む貯留関数法 * * *

23	「地下水流出を含む貯留関数法」	- 61
24	T_c を直接入力する	- 61
25	T_c をグラフから設定する	- 62
26		- 63
27	· 初期値等を設定する	- 64
28	再現計算を実行する	- 65
29	再現結果図の表示	- 66
30	データセットの印刷	- 68

7.2	流域分割解析システム 70
1	流出計算システムの起動 70
2	システムメニュー 71
3	項目選択 71
4	新規データセットによる計算(検討ケース名入力)
5	既存データセットによる計算 72
6	データセットの印刷 72
7	流域・河道ネットワーク図の作成選択 72
8	流域・河道ネットワーク図作成 73
9	検証地点のデータセット作成 77
10	初期値設定 80
11	再現計算 80
12	計算結果一覧表 81
13	再現計算結果図 81
14	再現計算結果図の印刷 81
15	データセットの印刷項目選択 82
73	流出計算システムメッヤージー覧 83

(.3 流山計算システムメッセーシー覧	83
(1)単流域解析システムのメッセージ	83
(2)流域分割解析システムのメッセージ	85

7. 流出計算システムの使用法

本書でここまでに解説してきた流出計算手法を、「単流域解析」と「流域分割解析」に分 けてシステム化し、流出計算システムとして巻末のCD-ROMに収めてあります。

ここからは、流出計算システムの使い方を解説します。

(1) C D - R O M は、流出計算システムをパソコンにインストールするために使います。

(2)サンプルデータが6種類入っています。まずこのサンプルデータでシステムを試してみ ることをお薦めします。

河川名	地点名	流域面積 (km ²)	データの期間	時間数			
雨竜川	多度志	998.8	昭和 63 年 8 月 25 日 1 時 ~ 27 日 24 時	72			
渚滑川	上渚骨	1050.6	平成 10 年 9 月 16 日 5 時 ~ 19 日 4 時	72			
後志利別川	今金	361.4	平成 10 年 5 月 1 日 10 時 ~ 4 日 9 時	72			
湧別川	開盛	1334.8	平成 10 年 9 月 16 日 4 時 ~ 19 日 1 時	70			
留萌川	幌糠	168.5	昭和 63 年 8 月 24 日 16 時 ~ 30 日 11 時	140			
標津川	合流点	657.0	平成 10 年 9 月 16 日 1 時 ~ 20 日 24 時	120			

.

売71 サンプルデータ

Ex 和均均量を用いた行留開放法。 サンプルデータはシステムをインスト ファイル(1) 編集(1) 第市(2) われに入り(8) ラール(1) ールしたフォルダ(デフォルトは アドレス(型) 二 有効雨量を用いた貯留製築法 7-14 C:¥Program Files)のKozui¥kozuiTan(単 1729Hp7 「マイエルシュータ 流域)とKouzuiTFSon(流域分割)の下に 18 🛃 35-10-4 FD (W) ある in 🗋 Kaupá E Cal KostuiTan KozuiTanryuSys _ > 8 🛄 相关用来常以开始的加速 と ※ 〇 地下水流出後含む打留開設法 = 🔄 有均衡量を用いた評論関係法 Kozu i FukuSvs Temp E Californith Kosta (TFSon の中にあります。 Calc C Wark 〒1個のオブジェクトを選択 (空きディスク)補助 1.76 日谷

(3)計算結果は、サンプルデータと同じフォルダ内にサブフォルダが作成され、保存されま す。削除したい場合は、エクスプローラーなどから行ってください。本システムの中で計 算結果フォルダを削除することはできません。

💻 単流域解析(有効雨量を用いた貯留関数法)

7 データの入力

「新規データセットの入力・計算」を選択する と、右のような空のデータ入力画面になります。 この画面に必要データを入力して下さい。

(1)「既存データファイル参照」をクリックして データを呼び出すことができます。

(以下の ~ は右図の中に説明のために付け た番号)

「既存データファイル参照」をクリックすると、¥KozuiTanryuSysが開かれるので

「有効雨量を用いた貯留関数法」フォルダを クリックし、 , の順にクリックしてデー タを指定します。

呼び出せるファイル名は「(フォルダ 名).dat」です。

他の種類のファイル、例えば「(フォルダ 名)1.dat」を選んでも「型が一致しません」 と出て使えません。

の画面に表示される「損失項を含む貯留関 数法」と「地下水流出を含む貯留関数法」の フォルダ内のデータも呼び出せます。

(2)「コピー」,「貼り付け」機能を使って既存
 データファイルや、EXCEL ファイルから入力
 することができます。

コピー:表示画面内の数値や EXCEL などの 表形式データを、範囲を指定して「コ ピー」をクリックすることにより記 憶します。

貼り付け:上記でコピーしたデータを貼り付けます。 貼り付ける範囲の先頭のセルをクリックして「貼り付け」をクリックする。 「コピー」で指定した範囲以上の範囲に貼り付けることはできません。(つま り、「コピー」で1個だけ選択したときは1個だけしか貼り付けることはでき ません。同じものを複数ヵ所に貼り付けたければ、その都度「貼り付け」を クリックする必要があります。)

削除:範囲を指定してまとめて削除できます。

なお、貼り付けと削除は取り消しできません。

の「実績流量・雨量の入力時間数」のところが空白のままだと「NULL の使い方が不 正です」というメッセージが出ますが、「実績流量・雨量の入力時間数」のところに 時間数を入力すれば何も問題はありません。時間数を一旦入力してから、小さい値に入 ━━━━ 単流域解析(有効雨量を用いた貯留関数法) =

力し直すと、余分な時間のデータは削除されます。また、大きな値に入力し直すと、増 えた分は全てゼロと見なされます。正しい値を入力して下さい。

(3)雨量及び流量データのブランクはゼロと見なします。

(4)行挿入や行削除はできません。入力時間数 を増やせば行の末尾に追加されます。減ら せば行の末尾が消去されます。(消去された行は復元できません)

したがって、先頭に行を追加したければ、まず入力時間数を必要な行数だけ増やし、コ ピー,貼り付け機能でデータ全体を下に下げる方法で実施して下さい。

18 へ

(5)入力が終わったら「決定」をクリックして下さい。

2で選択した手法によって次のように進みます。

(1)「有効雨量を用いた貯留関数法」 8へ

(2)「損失項を含む貯留関数法」

(3)「地下水流出を含む貯留関数法」 23へ

|8| 直接流出成分の分離 「有効雨量を用いた貯留関数法」を選択した場合、「直接流出成分の分離」画面となります。 直接流出成分の分離の考え方は、本文の「3.4流出成分の分離」(P11)を参照して下さい。 (1)右側の片対数グラフの上方にある「グラフから設定」をクリックします。 9 ~ 又は「直接入力設定」をクリックします。 10 ~ 直接流出成分の -JA BUIME (2) 左側の流出高の図は参考のために描いてあ サランの分離部 通知大力 ります。流出高の軸変更ができます。数値を LAAKKABRAM 書き直して「変更」をクリックすることによ -----り、最大値と目盛間隔を変更できます。目盛 間隔の最小値は1mm/hです。 (3)「数表参照」をクリックすると雨量,流量, 流出高の数値が表示されます。 350 (4)「印刷」をクリックすると右側の片対数グ ラフをA4横一杯の図にして印刷できます。 × |9| 直接流出成分をグラフ上で設定する 1 運動右角のグラスの点を運営して下さい。 操作説明ダイアログが表示されます。 04 内容を確認してから「OK」をクリックします。 グラフの下に操作説明が表示されます。 右側の画面上で、直接流出の分離計算範囲始点 1 有効雨量を用いた貯留開設法 T₁とするプロット点(つまり、洪水の立ち上が グラフから設定 直接入力設定 りの点)を選択してクリックします。 H1103-1-1-1 ピーク後の第1折点を選択してクリックします。 (この点は計算には使いませんが、第2折点の (Area イメージをつかむために有効なので、必ず設定 補出 するものとしてあります) 分離計算範囲終点T,とするプロット点を選択し 80 20 80.100.110 てクリックします。(通常は一番右端の点を選択 100 -00 100010-01 しておけば良い) 操作规则 決定ボタンを押して下さい。 県本、マウスを大わかされていらの進び表示されます 「決定」をクリックします。 P\$ 100 四 流出高 7.66 「戻る」で6へ戻ります。 雇主 「メニューへ」で3へ戻ります。

━━━ 単流域解析(有効雨量を用いた貯留関数法) =

■ 単流域解析(有効雨量を用いた貯留関数法)!

新規作成をやめる場合は「閉じる」をクリックします。 8へ戻る。 「キャンセル」をクリックすると9又は10へ戻ります。

12 再現計算を実行する

「 f_c 」と「 Δf_c 」及び「単位時間の分割数」 を入力して「計算開始」をクリックします。 最初は Δf_c を大きめに設定して、 f_c をしぼ り込んでゆくと良い。

「戻る」をクリックすると<mark>8</mark>へ戻ります。 「メニューへ」をクリックすると3へ戻り ます。

再現計算

試算は、一度に 10 回行われます。右図の 場合、試算回数 10 の f_c = 2.4 の行が赤色 表示となっているので、 f_c は 2.4 またはそ れより大きい値が最適値であることを示 しています。

	ENER	
フリックすると、 f_c , Δ f_c ,	fe	48

「 f_c 再設定」をクリックすると、 f_c , Δf_c , 単位時間の分割数がグレーから白のバッ クに変化し、そこだけ修正することができ るようになります。
 fc
 単位時間の分割数

 2.42
 0.10

 流域面積(km2)
 流出率

 163.90
 0.7539

1000

 f_c を入力し直して「計算開始」をクリックします。

 f_c = 2.8 付近が最適であることが分かっ たので、「 f_c 再設定」をクリックし、 f_c = 2.75, Δf_c = 0.01 として「計算開始」をク リックします。(Δf_c の最小単位は、当シス テムでは 0.01 としてあります)

ACRESSION				Ender 17H
1	2.408	23.041	let 258	0.29900
2	2.508	24.001	- HH 022	0.25222
- 1	1.60	24.961	107.102	0:22475
4	2,70	25.021	115,400	0.20993
5	2.60	20.891	124218	0.2069
8	2.903	27,841	139,244	02122
7	3.00	25.001	142,502	0.22875
12 M 12 M	230	29.761	152,250	0.25455
2	3.200	30.721	1.62.238	0.2992
	2.20	31.091	172526	0.33217

13 再現結果図の表示

(1)直接流出高と流量の表示 ピンクの枠の左上にあるインデックス 「流出高」又は「流量」を選択して図の軸 を変えることができます。「印刷」は、イ ンデックスのどちらを選択していても両 方の図を印刷します。

(2)軸変更

- ・雨量と時間の目盛を変更することはできません。
- ・流出高(流量)の目盛は変更できます。 これらの目盛は必ず適切な値に変更して おいた方が良いでしょう。結果を保存する ときに画面に表示された目盛で保存され るからです。なお、目盛の最小単位は1で す。

(3)印刷

「印刷」をクリックすると、画面に出て いるケースをプリンタに出力することが できます。プレビュー画面が立ち上がるの

で、その印刷機能を使ってプリントして下さい。

プレビュー画面を終了するには画面の右上にある×をクリックして下さい。

━━━ 単流域解析(有効雨量を用いた貯留関数法) ■

(4)数表参照

10回の試算結果一覧表を表示します。

なお、画面の左側のグリーンの枠に表示される誤差指標は、流量グラフのときは全流量 で再計算した値です。流出高グラフでは直接流出高を用いて算出した *J* / *N* の値だけを表 示しています。

14 計算結果一覧表の表示

「閉じる」をクリックすると、<u>12</u>- に戻り ます。

15 結果の保存

「保存」又は「メニューへ」をクリックす ると、結果を保存するかどうかを聞いてくる ので、「はい」又は「いいえ」をクリックし て下さい。

「はい」をクリックすると右下図のように 「再現計算結果図生成中…」のメッセージが 出ます。この間に 16の で出力するための 図を描いていますので若干時間がかかりま す。

「保存」をクリックした場合には、現在の 画面にとどまるので、「戻る」をクリックす れば12に戻ります。

「メニューへ」をクリックした場合には、 ③へ戻ります。ただし、「キャンセル」をク リックすれば現在の画面に留まります。

━━━━ 単流域解析(有効雨量を用いた貯留関数法) =

16 データセットの印刷

既存データファイルの中から印刷したいデータを選んで、「決定」をクリックします。

	- 340 7120 0185-	NUMBER OF BELIEVEN
	17-28 WW 188	
		E INTRACE-PASART.
101-24	0.00149	11115
881-36 240488	Ballin .	11253
ERT-24	Parties Parties Distance	112 S.H. S Billion on Lincolling of Francis Confliction 2 Million on Lincolling of Francis Confliction
881-24 24064 82409738 404088	20110 1940/10100 200100 1940/01/11 2011.10 1940/04/101 2011.10	H & B.S.
		1965 M
101-24 34/48 32/488 40/488 40/488 40/482		Listen P Drag av Hadlings Blass Fallens fallen P Drag av Hadlings Blass Fallens fallens P Drag av Hadlings Blass Fallen P Drag av Hadlings Blass Fallen P Drag av Hadlings P Drag av Hadlings P Drag av Hadli
80-34 82/80/98 82/80/98 80/802 80/802 80/802 80/80 80/80 80 80/80 80 80/80 80 80/80 80 80		CONTRACTOR OF CO
881-34 199788 82499798 82499798 824924 824926 824924 824924 824924 824926		CERES The active Decision of the Control of the Office of Control Control Test Control Office of Control Control Test Control Office of Control Control Office of the Office of Control Control Control Office Office of Control Control Control Office Office of Control Control Office of the Office of Control Control Control Office of the Office of Control Control Control Office of the Office of Control Control Control Control Control Office of Control Control Control Control Control Control Office of Control Control Control Control Control Control Control Office of Control Contr
881-24 199988 22409999 20499999 204924 204924 204924 204928 204928 204928		10000 1 These is Hardback Prese for the state 2 Has an Indefended Court Party of the 2 Has a Hardback Prese for the state 3 Has a Hardback Prese for the state 3 Has a Hardback Prese for the state 3 Has a Hardback Prese for the Hardback 3 Has a Hardback Prese for the Hardback 3 Has a Hardback Prese for the Hardback

「作図結果印刷」以外は、拡張子 txt 又は dat と関連づけられたエディターを使って表示されます。()

印刷は表示に使用されているエディターの印刷機能を使用して下さい。

なお、関連づけられたエディターによって は表示・印刷ができないことがあります。そ のときは、本システムを終了し、エディター で各ファイルを開き、そこでの印刷機能を使 って下さい。

	計算入力データ目間	
1	网络非常常常常的	
	定数と指定印刷	
	0.003.0000	

メモ帳にて表示された例を示しています。 印刷するにはエディター上で「ファイル(F)」 「印刷(P)」とすれば良い。

━━━ 単流域解析(有効雨量を用いた貯留関数法) =

「作図結果印刷」ボタンを押すと作図結果選択画面になります。

「有効雨量を用いた貯留関数法」では再現 計算画面12で保存した試算10回の図の中か ら選択して出力することができます。

試算回数のチェックボックスをクリック して、「印刷」をクリックして下さい。

図の表示は「PDF形式」で、Adobe Acrobat Reader(フリーソフト)を使います。PDFを 開くアプリケーションがインストールされ ていない場合は、以下のメッセージを表示し ます。

1100	NAME:	
AND SAUGHTER TO A SAUGHTER AND A SAU		ů:†
CARRIENT	T MINING	
C. MARINE (3)	T ACRESSION	
CAMBRON	C-MOMARMICO	
	C MORE COM	
· ALMINETTE	- accounting	

「PDF ファイルを開くアプリケーションが設定されていません。PDF ファイルを開くには、 「Adobe Acrobat」 がインストールされている必要があります。無償の「Acrobat Reader」 は、アドビ社のホームページより入手することができます。」

17 システム終了

各画面にある「メニューへ」のボタンをク リックすると右の画面に戻ります。この画面 で「メインメニューへ」をクリックすると2 の画面に戻るので、そこで「システム終了」 をクリックします。

単流域解析(損失項を含む貯留関数法)

18 「損失項を含む貯留関数法」

2で「損失項を含む貯留関数法」を選択し、3~7でデータのスタート年月日,時刻, 流域面積,入力時間数,流域平均雨量,実績流量を入力して「決定」をクリックするとこの画面になります。

既存データファイル参照や、コピー,貼り付け,削除の使い方は7を見て下さい。

ここでは、定数の初期値などを設定します。

 $c_1 \sim c_3$ の初期値を入力します。通常は表示値で問題ありませんが、収束しない場合は初期値を変えるとうまくいくことがあります。

単位時間の分割数は最大 20 までです。 収束判定値は通常 0.01 ~ 0.001 で良い。 試算回数の上限は 30 回です。30 回で収 束しない洪水は、元データを見直した方 が良いでしょう。

規則ワース名	10.00			加快的生活化影響開設生
• 40	開催を入力し	TOMA .		
ar = [INGRAFIO STREE -		P1 - (8880)
62+ [1194	REPRES -	1976	19 - T 1915
ca =	15006	MNER IN -	30 M	• • [
		Helia -	ocura	a - 1

減衰係数 λ は本文の「4.4 初期流出高 q_{in} と減衰係数 λ の設定」(P23)を参照して入力して下さい。

グレー表示になっている値は変更できません。

(1) 設定したら「決定」をクリックします。

「新規データセットの入力・計算」の場合は 19へ 既存データを再編集しているときは、上書 き保存するか、新規データとして登録する 現在の検討ケース名フォルダ内のファイルに上書きしますか? かを聞いてきます。 (3)へ (2)「戻る」をクリックすると7へ戻ります。 上書書 新规作医 中午24世纪 (3)上書き 19へ,新規作成 (4)へ,キャン セル (1)へのいずれかをクリックします。 (4)「新規作成」をクリックすると、右の画 登録する検討ケース名を入力して下さい。 面が出ます。 新しいケース名を入力して「決定」をクリ 検討ケース名 ックします。 19へ 決定 閉じる 「閉じる」をクリックすると(1)へ戻りま す。

単流域解析(損失項を含む貯留関数法) 19 再現計算を実行する 20 へ 「計算開始」をクリックします。 再現計算 建制建筑合作管理管理 「戻る」をクリックすると18へ戻ります。 H27-28 WHATHER ● 日本開始ポリンを用して下さい。 →→ 「日日開坊」 CI CI CI A INC. CONTRA 20 再現結果の表示 (1)計算が終わると試算経過が表示されます。 再现計算 試算はJ/Nが最小となるように行われま 株計ケース名 20月1日日 ■ 計算時代をいる時にてもれて す。J/Nなどの意味については、本文の 「2.3 モデル定数最適化の目的関数と精度 評価指標」(P8)を参照して下さい。 (2)作図のJ/N, J_{RE} , RMSE, E ボタンをクリックすれば、試算過程の中で それぞれの指標値が最小となったケース N 1 を作図します。 21へ (3)「計算結果一覧」をクリックすると J / N 計算結果 最小ケースの計算結果が表示されます。 また、試算過程の中で J_{RF} , RMSE, Eが なかでも読まを聞いおうらとたり目前にながあります。ます 此第一就我不会,心由我能会还把了人间算的 最小となるケースも表示できます。 (4)「保存」をクリックすると、下記メッセ ージが出ます。「はい」をクリックすると 計算結果をテキストファイルに保存しま す。 (7) TR:6 CREWE LIKELER (5)「メニュー」をクリックすると、下記メッセージが出ます。「キャンセル」は取り消し、 「はい」は結果を保存して3へ、「いいえ」は結果を保存しないで3へ戻ります。 (6)「戻る」をクリックすると17に戻ります。 3.1-#81.09121. (7)「保存」又は「メニューへ」をクリック 戻る前に、両現計算結果を採用しますか? CARLES CARLES EVICE したときに、「はい」をクリックすると「再

💻 単流域解析(損失項を含む貯留関数法)

現計算結果図生成中...」のメッセージが表 示され、22の で使う図をここで生成しま す。

再現計算結果図 生成中・・・

生成する図の縦軸目盛は 21 を実行して軸を変更しなければデフォルト値になってしまうので、21を実行して軸を確認してから保存した方が良いでしょう。「いいえ」をクリックすると、結果の保存と図の生成は行われません。

21 再現結果図の表示

(1)本手法は、全流量の図のみ表示されます。 したがって、各誤差指標値は全流量で計算 した値です。

(2)軸変更

- ・雨量と時間の目盛を変更することはできません。
- ・流量の目盛は変更できます。
 流量の目盛は必ず適切な値に変更しておいた方が良いでしょう。

APR 11A					
再現計算結果國					
H117-34 200 m		Secore accrementa			
A (M.M. R. SALE (M. M. R. SALE (M. SALE (M.					
3589E		HIM 3815			

結果を保存するときに画面に表示されている目盛で保存されるからです。 なお、目盛の最小単位は1です。

(3)印刷

「印刷」をクリックすると、画面に出ているケースをプリンタに出力することができま す。プレビュー画面が立ち上がるので、その印刷機能を使ってプリントして下さい。

(4)数表参照

作図されているケースの試算結果数値表を表示します。

「戻る」をクリックすると、20の画面に戻ります。

22 データセットの印刷

3で(3)の「データセットの印刷」を選択 したとき、入力データ,再現計算結果,定数 と誤差及び再現結果の図を印刷することが できます。

1	指失項を含む。當個數法	
4	教理データセットの入力・計算	
3	8.花データセットの編集・計算	
	and a solution	
	メインメニューー	

🧰 単流域解析 (損失項を含む貯留関数法)

既存データファイルの中から印刷したいデータを選んで、「決定」をクリックします。 「作図結果印刷」以外は、拡張子 txt 又は dat と関連づけられたエディターを使って表示されます。 印刷は表示に使用されているエディターの印刷機能を使用して下さい。なお、関連づけられたエディターによっては表示・印刷ができないことがあります。 そのときは、本システムを終了し、エディターで各ファイルを開き、そこでの印刷機能を使って下さい。

	データセットの印刷	データセットの印刷
	(株式学校会会会) 11-345-7120日115-34245月15-712345。 217-325 [[11]1939	計算人力, データ目編 内 製品 筆品 製品編
ENT-24 entres entres	FILLES FILLES HIM/NU/HI/E/HU/HI Off-second Facultiness/Humanifactures/Humanifa	97.00 2: 30 2010/04
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
くモ帳にて 刷するには ;)」 「印	表示された例を示していま tエディター上で「ファイル 刷(P)」とすれば良い。	

「作図結果印刷」ボタンを押すと作図結果選択画面になります。

「損失項を含む貯留関数法」では再現計算 タセットの印刷 画面 20 で保存した 4 種の誤差指標がそれぞ れ最小となったケースのみを作図できます。 _ 4種のいずれかを選択して「印刷」をクリ ロースがデスィルトであめわたいます。ものから使う通知。 小村下に、武士に知らってきぶきら聞い思うたた。 国外バッカルにであってあったます。 ックすると、印刷用アプリケーションが起動 し、図が表示されます。 + 224 印刷用アプリケーションの印刷機能を使 100.00 TRANE ってプリンタに出力して下さい。 「キャンセル」をクリックすると に戻り ます。

💻 単流域解析(地下水流出を含む貯留関数法) 🛾 23 「地下水流出を含む貯留関数法」 2で「地下水流出を含む貯留関数法」を選択し、3~7でデータのスタート年月日,時 刻,流域面積,入力時間数,流域平均雨量,実績流量を入力して「決定」をクリックする とこの画面になります。 既存データファイル参照や、コピー,貼り付け,削除の使い方は7を見て下さい。 ここでは、地下水流出成分の分離時定数T Te(分離時定数)及びるの設定 H117-3.6 2040 和自己 化化物 化物物 化物 を設定します。 「 T_{α} 及び δ を直接入力」をクリックすると · HUMPERTARDENIEF HELLENSALS 24へ行きます。 「こ及びるを直接入力 「検証地点の実績流量から算出」をクリッ クすると25へ行きます。 検証地点の実験読量から算出 「戻る」をクリックすると「6」へ戻ります。 「メニューへ」をクリックすると3へ戻り ます。 24 T_cを直接入力する T_c は地下水流出成分だけと考えられる洪 Te(分離時定数)及びるの設置 水末期の流量減衰勾配 λ の逆数であり、 λ = 和此法:法·1. 新闻的第三 0.005~0.03 程度なので、 $T_c = 1/\lambda = 30$ ~ 200 程度です。T の詳細については、本文の くらぬ時代を聞いまがすを入力してください 「5.4 地下水流出成分の分離時定数*T_c*の設 11 398 定」(P29)を参照して下さい。 また、 δ は通常 2.1 を与えておけば良い。 (1) $T_c \geq \delta$ を入力して「決定」をクリックす ると27へ行きます。

(2)「戻る」をクリックすると23へ戻ります。

28 再現計算を実行する

「計算開始」をクリックすると、計算を開 始します。

計算が終わると試算経過が表示されます。 (1)右図の場合、赤色表示された試算回数ケ ースが表示されていないので、13回以上の 試算が行われています。表の右にあるスク ロールバーを操作して13回目以降の試算 経過を表示させることができます。

スクロールバーを操作して 13 回目以降 の試算経過を表示させると 16 回目が赤色 表示になっています。この回が目的関数 J/N最小のケースです。J/N最小以降も 試算が実行されているのは、収束判定の 0.001 が小さすぎて、この洪水の場合採用 している数学的最適化手法では収束しき れないことを示しています。

(2)「計算結果一覧」をクリックすると*J / N* 最小ケースの計算結果が表示されます。

また、試算過程の中で J_{RE} , RMSE, Eが最小となるケースも表示できます。

(3)作図のJ/N, J_{RE} , RMSE, Eボタンをクリックすれば、試算過程の中でそれぞれの指標値が最小となったケースを作図します。(29)

J/N, J_{RE} , RMSE, E については、本文の「2.3 モデル定数最適化の目的関数と精度評価指標」(P8)を参照して下さい。

- (4)「保存」をクリックすると、右記メッセージが
 出ます。「はい」をクリックすると計算結果をテキストファイルに保存します。(7)
- (5)「メニュー」をクリックすると、右記メッセージが出ます。「キャンセル」は取り消し、「はい」は結果を保存して3へ、「いいえ」は結果を保存しないで3へ戻ります。

- 単流域解析(地下水流出を含む貯留関数法) ■
- (5)「数表参照」をクリックすると作図に使 用されている試算結果等の数値データを 表示します。
- Image: Control of the second second
- (6)「印刷」をクリックすると、(1)~(3)及び 25- 又は 26- で描いた T_c設定図を A 4 版 2 枚に出力できます。

30 データセットの印刷 3で(3)の「データセットの印刷」を選択 したとき、入力データ,再現計算結果,定数 と誤差及び再現結果の図を印刷することが できます。

	**	*	流	88	133	εz	メラ	A5	1	*	*	
	ſ	地门	F水	alta	读	tı	-121	e M	8	出		
1		nå	¥7*		tes	FØ	<u>л</u> ,	hz.+.	20 A	į.		
1		Æ(¥7)		t s	FØ	-	8 -9	#1	Ē.	1	
			9		1	1	riți	-			11	
			1	XI.	23	-		-			11	

______ 単流域解析(地下水流出を含む貯留関数法) **_**

既存データファイルの中から印刷したいデータを選んで、「決定」をクリックします。

		地下来通过进行的名
. 48211	- 3.68 7830 885	Addes and the day.
112	to-as an inter	
		C. TRYNBIN BILLING
100-33		e tettem an and the set
BRY-384809		el TREFAILME MAILENSING
1007-00.000		2. TREADER AN BASINES.
BB7-34 807-34 807-34 807-34 807-34 807-34 807-34 807-34 807-34		C. T.R.F.R.B.M. & SASHER.
BRY ALLOY BRY ALLOY BRY ALL BRY ALL BRY ALL BRY ALL BRY ALL BRY ALLOY BRY AL	E B (1400	C. TREPAREMENT BASINES.
		C. T.R. F.A. B.M. & SAN H. S
BH7-34 8807 BB7-34 BB7-34 BB7-38 BB7-38 BB7-38 BB7-38 BB7-38 BB7-38 BB7-38 BB7-38 BB7-38 BB7-34 BB7-		C. THE FARMER OF BASELEY.
BHY-03.6307 BHY-23. BHY-23. BHY-23. SHOP53. SHOP53. SHOP53. SHOP53. SHOP53. SHOP54.7		C. T.R. C.A. B.M. M. SANDARY. E. T.R. C.A. B.M. M. SANDARY. C. Margari, A. M. Sandary, S. M. S

「作図結果印刷」以外は、拡張子 txt 又は dat と関連づけられたエディターを使って表示されます。 印刷は表示に使用されているエディターの印刷機能を使用して下さい。 なお、関連づけられたエディターによっては表示・印刷ができないことがあります。その ときは、本システムを終了し、エディターで各ファイルを開き、そこでの印刷機能を使っ て下さい。

	非意入力学一步用明
	网络白斑幼桃田属
Ŧ,	用計算数等用單位的構成由成为
	定數上對當印刷
	THE REPORT OF THE PARTY OF THE

━━━ 単流域解析(地下水流出を含む貯留関数法) • メモ帳にて表示された例を示しています。 印刷するにはエディター上で「ファイル(F)」 「印刷(P)」とすれば良い。 the ste call - 12 「計算入力データ」-「定数と誤差印刷」 SPERIE PLAN 國護護議 鞋 團調 讍 1 12 꺩 13 1 San Branchastering Branchastering COLOR TRESSEREESESSORE LEVE 「再現計算結果印刷」 1 ųĨ -40 of Statestic and the second film Contraction of the second seco Constant Constants *** This are a second of the secon Children in the local state in the Λ 「再現計算結果印刷」(直接流出分) 「作図結果印刷」ボタンを押すと作図結果選択画面になります。 「地下水流出を含む貯留関数法」では再現 データセットの印刷 計算画面 28 で保存した 4 種の誤差指標がそ れぞれ最小となったケースのみを作図でき TO BALLER AND 1-3がデジュルトで現代かれています。名供参加増生活的 行すた。認知知知られても没きた何が低くしたと かいて見れたであるためます。 ます。 4種のいずれかを選択して「印刷」をクリ ックすると、印刷用アプリケーションが起動 10.00 TRACE し、図が表示されます。 印刷用アプリケーションの印刷機能を使 ってプリンタに出力して下さい。 「キャンセル」をクリックすると に戻り ます。

_____ 流域分割解析 ■

7.2 流域分割解析システム

損失項を含む貯留関数法を適用して、分割流域の流出計算と河道追跡ができる流出計算シ ステムです。「複合流域の流出計算システム(1段タンク型)」と呼びます。本システムで は、解析できる流域の数などに以下の制限があり、いずれかひとつでも制限を越えるとシ ステムは使えません。

수비7日 1급 다	ネットワーク図作成機能	ネットワーク図作成機能	
	を使用しない場合	を使用する場合(7参照)	
ネットワーク図の大きさ		40 行×30 列以内	
流域数	100 まで	同左	
上 流 端 数	100 まで	同左	
河道数	100 まで	同左	
支川の次数	5まで	同左	
計算地点数(注1)	500 まで	同左	
全地点数(注2)	600 まで	同左	
データ入力時間数(注3)	300 まで	同左	
1時間の分割数(注4)	20まで	同左	
試算回数の上限	30 まで	同左	

注1:計算地点数は(流域数)+(河道数)+(上流端数)+(直下流が河道でない合流 点数)です。

注2:全地点数は、流域などの構成要素に付けた地点番号の最下流端での値です。

注3:雨量と流量の入力時間数のことで、毎時データのみ入力できる。

注4:局所線形化を行った数値解法を用いているので、1時間をいくつかに分割しないと 収束しないことがあります。

1 流出計算システムの起動

デスクトップ上に作成された右図のアイ コンを**ダブルクリック**すると、複合流域の洪 水流出計算システム(1段タンク型)が起動 します。

____ 流域分割解析 (7) 図形移動 図形移動ボタンを押し、移動したいパーツをクリックし、カーソル(+ 印)を移動先で再度クリックします。1回に1個のパーツを移動できます。 図形削除ボタンを押し、削除したいパーツをクリックすると削除されます。 (8) 図形削除 (9)列挿入 列挿入ボタンを押し、列上の任意 のグリッドをクリックします。ク 11 リックした列が緑色に着色され、 D-HE-その左側の列との間に空白の列 が挿入されます。 i-1 (10)列削除 列削除ボタンを押し、削除したい 列のグリッドをクリックします。 クリックした列が赤色に着色さ れ、その列が削除されます。 (11)行挿入,行削除 列挿入,列削除と同様に行の挿入, 削除ができます。 注)キャンパス内におけるグリッドの数は 40 行×30 列で固定されており、行又は列の挿 入により挿入前の 40 行目又は 30 列目に描かれたパーツは消滅します。一旦消滅したパ ーツは、あとで行又は列の削除を行っても復活しません。なお、挿入・削除は一回行う のに数10秒かかるので、できれば最初から余裕のある配置にして下さい。 2)手順の説明 右に示す留萌川幌糠の流域・河道ネットワ ークを作りながら使い方を説明します。 最初にどこから配置するかを決めたほう 54 10 が良いでしょう。あとで行や列を挿入するこ 合流占 В 78 9 12 とはできますが、遅いので、最初に行や列を 13 合流点 挿入しなくても済む配置を考えた方が早く С 作図できます。 合流点 右図の例なら、1 流域を4 列目より右に配 16 15 17 8 置するか、3流域を4行目より下に配置して、 19 18 24 そこに順次他のパーツを接続しながら配置 20. 25 _____D 合流点 していくと良い。 23 26 合流点

留萌川幌糠の流域・河道ネットワーク

流域分割解析 •

パーツを選ぶ

画面左の図形パーツにカーソルを合わせ てクリックします。(マウスボタンを押し ている間だけ、選択したパーツが赤色に表 示されます。)

ドラッグではなく、クリックして選び、 クリックして配置するという方法です。

ネットワーク図 作成				
RETY-245 MIRAN	ネットワーク国际中心 新聞地山			
ADR1-5188-0478		1		
A N TO- L-C MANN				
LAN QO- A-O MEAN				
A D D D D D				
		1		
REA TO THE PLANE				
THE PEPPE MAX				
10 W 1000				
BA RIAK B.T.				
of an a				
2-20-0000000				

配置場所を決める

画面右にカーソルを移すと、選んだパーツが赤色状態でカーソルと一緒に動きます。 この状態でカーソルを動かしてパーツを配置するマスを選びます。

配置する

パーツを配置したいマスでカーソルをクリックすると、パーツが配置され、黒表示に変わります。

全体を作る

~ をくり返して、全体ネットワーク図を作成します。パーツを置く順番は関係あり ません。

最後に基準点を配置する

ネットワークの最下流端に「基準点」のパーツを配 置して下さい。(基準点は1ヵ所だけ設定する)実際の ネットワークではこの基準点の直上流地点が検証地点 となっていますが、作図の終了を判断しやすくするた めに追加したパーツです。

パーツの配置が終了したら「ネットワーク図接続完了」をクリックします。 正しく接続されていれば「ネットワーク図は正常に接続されています。各図形をクリッ クして計算順序を入力してください。」というメッセージが出るので「OK」をクリック して下さい。 ヘ

CHRISTIN IN MURITARY

15446

AC MORE REAL

ACR + 5188-54 日本

10

8.0 R184 8.7

YD-4-0 HEHE

ネットワーク図接続完了

計算順序を入力する

ってやり直しになります。

入力した計算順序が表示される

中に計算順序が表示されます。

全パーツに計算順序を付ける

計算順序設定完了をクリックする

動的に表示されます。

了」をクリックします。

に設定します)

序を入力する状態の画面になります。

ネットワークの接続が完了すると、計算順

まず、計算順序を設定したいパーツをクリ ックして下さい。(計算順序は全部のパーツ

「計算の順序を入力してください」というメッ セージとデフォルトの計算順序が表示されるの

「取消」をクリックすると、パーツの選択に戻

「設定」をクリックするとパーツの左上の小さい四角の

注) , で入力し、表示される計算順序は仮の計算順序 です。最終の計算順序は、仮の計算順序を使って で自

と をくり返し、全パーツに計算順序を付けます。

全パーツに計算順序を付けたら「計算順序設定完

で、よければ「設定」をクリックして下さい。

流域分割解析

Date: The

登算の順序を入力してください

10

ネットワーク図作成

設定 取消

490-9	×
٩	正地にモデル図からの線球干鉄定が売了しました。 モデル図れ再編編します。
	ОК

正しい計算順序が設定されていれば「正常にネットワーク図からの識別子設定が完了し ました。ネットワーク図を再描画します。」というメッセージが出るので「OK」をクリ ックします。

河道とその直上流のパーツの計算順序は必ず連続させて下さい。その他は上・下流が逆 転しない限り問題ありません。

流域分割解析

地点番号と最終計算順序が表示される 地点番号と最終の計算順序が表示されま す。これでよければ「決定」をクリックし ます。 9へ

修正したければ ネットワーク図再編集」 をクリックします。 へ戻る

ネット	ワーク図作成
Rety-24 Manager	2549-2000年46. 新聞地点
ALE C SIGRA BE	1
111 PO-5-0 MANN	
REA	
R - R155 K.K.	
4.4 ¹⁹ -399 8	the strange
非累 書類成 里丁	Car and Salaria

ネットワーク図作成

101116

Six ME

11000

110

-X8 84.083

新聞する時期の構築

- - al. +-

0

8.6 8185 8.7

ALAN DESIGN

ALL BREAK

4 4

D-7-4

計算順序に誤りがあるとき

上・下流が逆転している場合など、計算 順序が正しくない場合は「計算順序の指定 に誤りがあります」と出るので「OK」を クリックし、計算順序を正しい値に設定し 直して下さい。誤りがある部分のパーツが 赤色表示に変わりますので、それを参考に 修正して下さい。

9 検証地点のデータセット作成

流域分割解析

(5)「データセット」ボタン

流域・河道識別データの入力完了時にクリックします。

これを押すことによって流域数等を自動判定し、データが固定され、ボタン名が「流域・ 河道再設定」に変わります。再度押すと「データセット」に変わり、データ固定が解除 され、修正できるようになります。「データセット」ボタンの状態で次の画面に進むこ とはできません。

ネットワーク図作成機能を使って作図した場合は、ボタン名が「流域・河道再設定」に なっています。

(6)コピー データをコピーします。

(7)貼り付け コピーしたデータを貼り付けます。

(8)削除 データを削除します。

(9)既存データファイル参照 既存入力データファイルを読み込みます。

この機能を使って読み込まれるデータは「河道データ」,「面積・流量・雨量データ」も 含む全てのデータです。また、先に作成した「流域・河道ネットワーク図」と識別デー タは、この画面に来た段階で切り離されてしまうので、ここで識別データ等を書き直す と、先に保存した「流域・河道ネットワーク図」は無関係なものになってしまいます。 「流域・河道ネットワーク図」を作れば「流域・河道識別データ」が自動的に作成され ますが、その逆はできません。

そのため、右メッセージが表示されます。 はいをクリックすると既存データフ ァイルを選択するウィンドウが開くので、 その中の「~_Wr05.dat」の名のファイル から選んで下さい。このとき流域・河道 ネットワーク図は削除されるので、後で データ保存のとき「すべて上書き」を選 択すると、せっかくあった流域・河道ネ ットワーク図がなくなってしまいます。 「新規フォルダ作成」で別ファイルとし て保存した方が無難です。

河道データ入力			
前画面で設定したネットワークの河道数	測出部2004 検討地方のデータセットがは		
お自由で設定したポット シークの内定数	検討たース名 留前川幌康 二法 紫葉二 3		
にいれがなかこれは、ションの追い加下町面積 $a - \alpha a^m$ における $\alpha - \mu$ 乃び河道延長な	<u>流经</u> ·河道蔑朔データ入力 <u>河道データ入力</u> 面積- 流量- 雨量入力 <u>河道数</u> = 4 合流点数 = 6		
$a_s - aq_s$ にのける $a \in m$ 及び 内 追 座 伐 e	河道名 な m 延見(m) A 1.4472 0.8086 2.470		
八月しより。 ここに、 u_s . 町面禎(田)	B 1.4472 0.0006 1.1420 C 1.4891 0.8858 2010 D 1.4472 0.8068 10070		
<i>q_s、内垣加重</i> (1173) 注)「既友のデータファイルを参昭」で開			
	既存データファイル参照 戻る 次へ メニューへ		
アイルを選択すると他のテーダも全て差			
し替えられます。			
河道データだけを参照したいときは、EXCE	L 等で河道データを開き、そこからコビー&		
貼り付けすること。「面積・流量・雨量入	力」画面も同じです。		
面積・流量・雨量データ入力 ――――			
(1)面積 各流域の面積を入力します。(k	m ²)		
(2)流量 検証地点の実績流量を入力します。(m³/s)			
(3)雨量 各流域の時間雨量を入力します。(mm/h)			
(4)上流端 各上流端の流入流量を入力しま	す。(m³/s)		
(5)年月日時刻は で入力したデータのス	^{8世田第2391} 拾 証 曲 占 の デー・タセット 作 成		
タート年月日時刻とリンクしています。	代目L4回ハマノノ マンノ 「FFA 検討ケース名 留明川幅課 「彼は女王 目 上流端流入放王 目 (法 本次王 目 上流端流入放王 目 (法 本次王 目 上流端流入放王 目 (法 本次王 目 上流端流入放王 目		
(6)ステップ数も の計算時間数とリンク	[流楼·河道震闲 デー9入力 河道デー9入力 面積·流量·雨量入力 「加速な 」 「 加速な 」		
しています。	年月日 時刻 ステップ 活躍 雨道 前 前 前 前 1 3		
(7)この画面でのみ 全データの設定終了	1988 8 24 2 3 0.35 0.32 0.00 0.50 0.46 0.36 0.51 1988 8 24 3 4 0.35 0.32 0.00 0.50 0.36 0.00 0.51 1988 8 24 4 5 0.35 0.00 0.50 0.36 0.00 0.51 1988 8 24 4 5 0.35 0.00 0.00 0.00 0.00 0.51		
(「)この自国とのの、エアーアの設定派」	1988 8 2.4 5 6 0.35 0.88 0.63 1.00 0.85 0.24 0.99 1988 8 2.4 6 7 0.39 0.00 0.00 0.00 0.00 0.00 0.04 1988 8 2.4 7 8 0.39 1.88 2.52 1.50 1.93 3.54 1.51 1988 8 2.4 7 8 0.39 1.88 2.52 1.50 1.93 3.54 1.51 1988 8 2.4 7 8 0.39 1.88 2.52 1.50 1.93 3.54 1.51 1988 8 2.4 7 8 0.39 2.93 3.70 3.54 3.51		
	1988 8 24 9 10 0.53 219 2.52 2.00 2.04 2.13 2.01 1988 8 24 10 11 0.57 0.55 0.63 0.50 0.46 0.24 0.51 1988 8 24 10 11 12 0.66 0.32 0.00 0.50 0.50 0.50 0.59 0.03 0.00 0.50		

流域分割解析

流域分割解析 15 データセットの印刷項目選択 3で「データセットの印刷」をクリックし、6で印刷したいデータを選択するとこの画 面になります。 データセットの印刷 計算入力データ印刷 流出計算の入力データファイルを表示・印 計算入力データ印刷 刷します。 河南沿南北地田市 再現計算結果印刷 高碱成田 - 阿诺语纳 经算输单目的 検証地点の再現計算結果ファイルを表 定量と終望回顧 示・印刷します。 非国新常用助机 流域流出·河道追跡計算結果印刷 全地点の計算結果を表示・印刷します。 定数と誤差印刷 試算過程における、定数と誤差フ ァイルを表示・印刷します。 4,000 から は拡張子 txt 又は dat と 関連付けられたエディターを使って 表示されます。 なお、関連づけられたエディター によっては表示・印刷ができないこ とがあります。そのときは、本シス テムを終了し、エディターで各ファ イルを開き、そこでの印刷機能を使 って下さい。 作図結果印刷 作図結果印刷をクリックすると、右図の タセットの印刷 ように誤差指標値を選択する画面になり ます。デフォルトはJ/Nです。 印刷したい誤差指標値を選んで「印刷」 AV. SEASTAN をクリックしてください。

14の印刷形式(PDF形式)で画面表示 されます。画面表示に使われたアプリケー ションの印刷機能を用いてプリンターに 出力してください。 「キャンセル」をクリックするとこのペー

ジの最初の画面に戻ります。

7.3 流出計算システムメッセージ一覧

(1)単流域解析システムのメッセージ

単流域解析 1/2

番号	メッセージ	状態
1	データが登録されていません。	既存データセットが、一件も存在しないの に、既存データセットの編集・計算を選択 した場合
2	検討ケース名を入力してください。	現在のデータセットを新規データセットとし て登録しようとしているのに新規検討ケー ス名が入力されていない場合
3	このケース名は既に使用されています。 ケース名を変更して再入力して下さい。	新規ケース作成時に、既に存在するケー ス名を入力した場合
4	流域面積が入力されていません	データ設定画面で、流域面積が入力され ていない場合
5	入力時間数が入力されていません	データ設定画面で、実績流量・雨量の入 力時間数が入力されていない場合
6	ここでメニューへ戻ると、計算入力データ は保存されません。計算入力データを保 存しますか	データ設定画面で、メニューへ戻ろうとし た場合
7	計算入力データを保存する場合は、決定 ボタンを押して下さい。	上記のメッセージで「はい」を選択した場 合
8	⊺1の値はT2より小さい数値は設定でき ません	設定された開始時間より終了時間が小さ い場合
9	値を入力して下さい。	グラフの目盛設定で最大値及び目盛間隔 が入力されていない場合
10	目盛間隔を入力して下さい。	グラフの目盛設定で目盛間隔が入力され ていない場合
11	最大値を入力して下さい。	グラフの目盛設定で最大値が入力されて いない場合
12	計算処理時にエラーが発生しました。設 定した値を確認して下さい。	再現計算実行時に、設定データが不適切 であるためエラーが発生した場合
13	メニュー画面に戻ります。 戻る前に、再現 計算結果を保存しますか	再現計算結果を保存しないでメニューに 戻ろうとした場合
14	既に再現計算結果図が開かれています。 現在開かれている再現計算結果図を閉じ た後、再度実行してください。	既に再現計算結果図の画面が開かれて いる状態で、再度、再現計算結果図を開 こうとした場合
15	再現計算結果図が表示されている状態で はデータの保存ができません。先にそちら の画面を閉じてください。	再現計算結果図が開いている状態で、再 現計算結果を保存しようとした場合
16	既に計算結果表示画面が開かれていま す。	既に計算結果一覧が開かれている状態 で、再度開こうとした場合

単流域解析 2/2

番号	メッセージ	状態
17	再現計算が実行されていません。既存 データセットの編集・計算により再現計算 を実行し結果を保存して下さい。	再現計算結果が保存されていないケース の再現計算結果を印刷しようとした場合
18	テキストファイルを開くアプリケーションが 設定されていません。ファイルを開くことが できませんでした。	拡張子「TXT」に割り当てられたアプリケー ションが存在しない場合
19	PDFファイルを開くアプリケーションが設定 されていません。PDFファイルを開くには、 「Adobe Acrobat」がインストールされて いる必要があります。無償の「Acrobat Reader」は、アドビ社のホームページより 入手することができます。	グラフ印刷時にファイルを開くための、 Acrobatがコンピュータにインストールされ ていない場合
20	ファイルがありません。	選択されたグラフファイルが存在しない場 合
21	グラフ設定回数が、本システムを起動して から100回を超えています。メモリ不足とな る可能性がありますので、[OK]ボタンを押 してシステムを一度終了して下さい。続け て解析を実行する場合は、再度システム を起動して下さい。	Windows98の場合で、設定回数が100 を超えた時に発生(メモリ不足の可能性あ り)
22	stop 'Re が すべて 0 です	実績雨量がすべて0の場合
23	RかQがゼロです	計算範囲の直接流出高の合計または、計 算範囲の雨量の合計が0の場合
24	再現計算結果図または、計算結果の画面 が開かれています。 先にそちらの画面を 閉じてください。	再現計算結果図または、計算結果の画面 が開かれている状態で、メニューまたは前 画面に戻ろうとした場合
25	現在の試算回数10ケースの再現計算結 果をテキスト形式で保存します。再現計算 結果を保存しますか	再現計算結果保存時の確認メッセージ
26	単位時間の分割数の値が不正です。1 ~ 20の範囲で指定してください。	初期データ入力画面で、入力された単位 時間の分割数が範囲外の場合
27	試算回数上限の値が不正です。1~30 の範囲で指定してください。	初期データ入力画面で、入力された試算 回数の上限が範囲外の場合
28	再現計算結果をテキスト形式で保存しま す。再現計算結果を保存しますか	再現計算結果保存時の確認メッセージ
29	グラフ作成時にエラーが発生しました。入 カデータに誤りがあります。「戻る」ボタン をクリックし、確認を行ってください。	Tcをグラフより求める場合、入力データが 不正のためグラフを生成できない場合

(2)流域分割解析システムのメッセージ

流域分割解析 1/5

番号	メッセージ	状態
1	このアプリケーションはすでに開かれてい ます。	既にシステムが起動されている場合
2	データが登録されていません。	既存データセットが一件も存在しないのに 既存データセットによる計算を選択した場 合
3	検討ケース名を入力してください。	現在のデータセットを新規データセットとし て登録しようとしているのに新規検討ケー ス名が入力されていない場合
4	このケース名は既に使用されています。 ケース名を変更して再入力して下さい。	新規ケース作成時に、既に存在するケー ス名を入力した場合
5	流域・河道ネットワーク図の作成区分が選 択されていません。「する」または「しない」 を選択してください。	ネットワーク図の処理の有無を指定してい ない場合
6	新規にネットワーク図の作成を行ないま す。よろしいですか	新規にネットワーク図を作成しようとした 場合
7	選択されたファイルは「* * * * *」で す。このファイルでよろしいですか?	既存のネットワーク図を読み込む場合の 確認メッセージ
8	指定されたデータは、ネットワーク図デー タではありません。	上記で選択したネットワーク図のデータが 不正の場合
9	このパーツを削除してよろしいですか	図形を削除しようとした場合
10	その位置には、パーツは存在しません。	図形の移動時に、図形の存在しないセル を選択した場合
11	既にパーツが、割り当てられています。 パーツを置き換えますか	既に図形が配置されたセルに図形を配置 しようとした場合
12	ネットワーク図が編集作業中のため、他 の作業は行えません。 編集を中断する 場合は、キャンパス上で右クリックしてくだ さい。	図形を配置処理の最中、他の作業を行お うとした場合
13	パーツ配置エラー!パーツが1つも配置さ えれていないため、処理を行うことができ ません	配置された図形が存在しない状態で、ネッ トワーク図接続完了ボタンを選択した場合
14	ネットワーク図の接続にエラーが発見され ました。エラー箇所は、赤で塗りつぶし表 示しています。ネットワーク図の配置を再 確認してください	ネットワーク図の接続が不正の場合
15	ネットワーク図は、正常に接続されてま す。各図形をクリックし計算順序を入力し てください。	ネットワーク図の接続が正しい場合
16	計算順序の指定に誤りがあります。「計算 順序の指定がされていません。」	ネットワーク図確定時に、計算順序が指 定されていない図形が存在する場合

流域分割解析 2/5

番号	メッセージ	状態
17	計算順序の指定に誤りがあります。	同じ計算順序が複数指定されている場合、または番号が連番になっていない場合
18	計算順序の指定に誤りがあります。「図形 に対する計算順序に誤りがあります。」	図形に割り当てられた計算順序が不正の 場合
19	ネットワーク図のチェック中にエラーが発 生しました。再度、チェックを実行してくだ さい。	ネットワーク図より識別子を生成する際 に、エラーが存在した場合
20	正常にネットワーク図からの識別子設定 が完了しました。	作成したネットワーク図より識別子の作成 が成功した場合
21	ネットワーク図を再編集する場合は、「ネッ トワーク図再編集」ボタンをクリックしてく ださい。	図形の構造確定後に図形を変更しようと した場合
22	設定した計算順序はクリアされます。 模式 図編集後、再度設定する必要がありま す。 ネットワーク図を再編集しますか	図形接続完了後に図形の再編集する場 合
23	ネットワーク図印刷用の画像作成に失敗 しました。	ネットワーク図印刷用の画像作成に失敗 した場合
24	行もしくは列を操作する位置を、マウスで クリックしてください。「OK」選択後、キャ ンセルする場合はキャンパス上で右クリッ クしてください。	行・列挿入時のメッセージ
25	列を挿入します。網掛けされた部分より右 にシフトされます。よろしいですか	列挿入時のメッセージ
26	行を挿入します。網掛けされた部分より下 方にシフトされます。よろしいですか	行挿入時のメッセージ
27	列を削除します。網掛けされた部分が削 除され、左にシフトされます。よろしいです か	列削除時のメッセージ
28	行を削除します。網掛けされた部分が削 除され、上方にシフトされます。よろしいで すか	行削除時のメッセージ
29	ここでメニューに戻るとネットワーク図は保 存されません。ネットワーク図データを破 棄し、メニューへ戻りますか	ネットワーク図が確定されていない状態で メニューに戻ろうとした場合
30	ネットワーク図の作成が完了していませ ん。	ネットワーク図が確定していない状態で 「決定」ボタンを選択した場合
31	正常に保存されました。	ネットワーク図データの保存が正常に完 了した場合

流域分割解析 3/5

番号	メッセージ	状態
32	ここでメニューへ戻ると、計算入力データ は保存されません。計算入力データを保 存する場合は、全てのデータを入力した 後、面積・流量・雨量入力タブを選択して 決定ボタンを押して下さい。これまで入力 したデータを破棄し、メニューに戻ります か	データセット入力画面よりメニュー画面に 戻ろうとした場合
33	本ケースには、ネットワーク図が設定され ています。ここで「流域・河道再設定」を行 うと、設定されているネットワーク図が削 除されます。削除しますがよろしいですか	ネットワーク図が存在するケースに対し、 流域・河道を再設定しようとした場合
34	本ケースには、ネットワーク図が設定され ています。ここで「既存データファイル参 照」を行うと、設定されているネットワーク 図が削除されます。削除しますがよろしい ですか	ネットワーク図が存在するケースに対し、 データセットを既存のファイルから取り込 もうとした場合
35	「キャンセル」ボタンが選択されましたの で、ネットワーク図は削除しません。	上記の確認メッセージで「キャンセル」が 選択された場合
36	識別子に「1」流域、「2」上流端、「3」河道、 「4」合流点 以外の値が入力されていま す。入力内容を確認してください。	流域・河道識別子の入力欄に対象外の値 が入力された場合
37	最初の河川次数は0でなければなりません。	最初の識別子の次数が0でない場合
38	最後の河川次数は0でなければなりません。	最後の識別子の次数が0でない場合
39	計算順序が1の場合、識別子は「01」流域 もしくは「02」上流端でなければなりませ ん。	最初の識別子が、流域または上流端でな い場合
40	流域・河道識別データは正常に構成され ています。引き続き、河道データ及び、面 積・流量・雨量の入力を行ってください。	識別子の入力が正常の場合
41	ネットワークの識別データ読み込み時にエ ラーが発生しました。データに不正な文字 が存在します。確認してください。	ネットワーク図作成により生成された識別 子データが不正の場合
42	流域・河道識別データが設定された後に、 有効になります。 流域・河道識別データ入 力後、「データセット」のボタンを押してくだ さい。	識別子が確定状態のとき、 グリッドの内容 を変更しようとした場合
43	流量データを入力「する」か「しない」かを 選択して下さい。	流量データの有無が指定されていない場 合
44	流域面積が入力されていません。 流域面 積の入力を行ってください。	流域面積が入力されていない場合
45	河道定数が入力されていません。	河道定数のが入力されていない場合
46	河道定数mが入力されていません。	河道定数のmが入力されていない場合

流域分割解析 4/5

番号	メッセージ	状態
47	河道定数(延長)が入力されていません。	河道の延長しが入力されていない場合
48	選択されたファイルは「 * * * * * * * 」です。このファイルでよろしいですか?	既存のデータセットを読み込む場合の確 認メッセージ
49	既存データの読み込みに失敗しました。 データ形式が正しいか確認してください。	既存データセットの読み込みが失敗した 場合
50	データファイルの読み込みが、正常に完 了しました。	既存のデータセットが正常に読み込まれ た場合
51	検証地点データセットデータのバックアッ プ作成時にエラーが発生しました。	検証地点データの保存に失敗した場合
52	検証地点データセットの読み込み時にエ ラーが発生しました。前回保存したデータ が正常に書き込まれていない可能性があ ります。	検証地点データの読み込みに失敗した場 合
53	初期データの読み込み時に、エラーが発 生しました。データに不正な文字が存在し ます。確認してください。	初期データ読み込み時にエラーが生じた 場合
54	単位時間の分割数の値が不正です。1 ~ 20の範囲で指定してください。	入力された単位時間の分割数が範囲外 の場合
55	試算回数上限の値が不正です。1~30 の範囲で指定してください。	入力された試算回数の上限が範囲外の 場合
56	フォートランの計算実行時にエラーが発生 しました。入力データ「Wr05」のファイル書 式が不正です。	フォートランによる計算実行エラーが発生 した場合
57	計算結果の読み込み時にエラーが発生し ました。計算結果が不正です。検証地点 データセットの内容を確認してください。	計算結果データが不正の場合(数値の オーバーフロー)
58	値を入力して下さい。	グラフの目盛設定で最大値及び目盛間隔 が入力されていない場合
59	目盛間隔を入力して下さい。	グラフの目盛設定で目盛間隔が入力され ていない場合
60	最大値を入力して下さい。	グラフの目盛設定で最大値が入力されて いない場合
61	再現計算結果図または、計算結果の画面 が開かれています。 先にそちらの画面を 閉じてください。	再現計算結果図または、計算結果の画面 が開かれている状態で、メニューまたは前 画面に戻ろうとした場合
62	再現計算結果図が表示されている状態で はデータの保存ができません。先にそちら の画面を閉じてください。	再現計算結果図が開いている状態で、再 現計算結果を保存しようとした場合
63	既に再現計算結果図が開かれています。 現在開かれている再現計算結果図を閉じ た後、再度実行してください。	既に再現計算結果図の画面が開かれて いる状態で、再度、再現計算結果図を開 こうとした場合

流域分割解析 5/5

番号	メッセージ	状態
64	再現計算結果をテキスト形式で保存しま す。 再現計算結果を保存しますか	再現計算結果保存時の確認メッセージ
65	既に計算結果表示画面が開かれていま す。	既に計算結果一覧が開かれている状態 で、再度開こうとした場合
66	初期データファイル読み込み時にエラー が発生しました。前回の保存に失敗した 可能性があります	初期データ読み込み時にエラーが生じた 場合
67	検証地点データセットの読み込み時にエ ラーが発生しました。前回保存したデータ が正常に書き込まれていない可能性があ ります。	計算画面より戻った時に検証地点データ セットファイルの読み込みに失敗した場合
68	メニュー画面に戻ります。戻る前に、再現 計算結果を保存しますか	メニューに戻る場合のデータ保存確認メッ セージ
69	再現計算が実行されていません。既存 データセットの編集・計算により再現計算 を実行し結果を保存して下さい。	再現計算結果が保存されていないケース の再現計算結果を印刷しようとした場合
70	テキストファイルを開〈アプリケーションが 設定されていません。ファイルを開〈ことが できませんでした。	拡張子「TXT」に割り当てられたアプリケー ションが存在しない場合
71	PDFファイルを開くアプリケーションが設定 されていません。PDFファイルを開くには、 「Adobe Acrobat」がインストールされて いる必要があります。無償の「Acrobat Reader」は、アドビ社のホームページより 入手することができます。	グラフ印刷時にファイルを開くための、 Acrobatがコンピュータにインストールされ ていない場合
72	ファイルがありません。	選択されたグラフファイルが存在しない場 合